COGS138: Neural Data Science

Lecture 9

- C. Alex Simpkins, PhD
- UCSD Dept. of Cognitive Science, Spring 2023 RDPRobotics, LLC
- http://casimpkinsjr.radiantdolphinpress.com/pages/cogs138_sp23
 - rdprobotics@gmail.com | csimpkinsjr@ucsd.edu

Plan for today

- Announcements
- Assignment 2 overview due tonight at midnight!
- Review Last time
- More on Data, Visualization, and outlier detection
- Statistical data analysis, Part 1
- Group projects introduction

Announcements

• A2 - due **Friday 5/5**

- Reading 2 Released on canvas and in web site password protected area soon, lecture quiz due next **Tuesday 5/9 R2 quiz**
- Group formation check canvas for empty groups, please self-sign up
- Previous project review released when we get the groups together (this week)
- Podcasts added to webpage along with several links to readings

Last time

Course links

Website	http://casimpkinsjr.radiantdolphinpress.com/pages/ cogs138_sp23	Main face of the course and everything will be linked from here. Lectures, Readings, Handout Files, links
GitHub	https://github.com/drsimpkins-teaching	files/data, additional materials & final projects
datahub	https://datahub.ucsd.edu	assignment submission
Piazza	<u>https://piazza.com/ucsd/spring2023/</u> <u>cogs138_sp23_a00/home</u> (course code on canvas home page)	questions, discussion, and regrade requests
Canvas	https://canvas.ucsd.edu/courses/44897	grades, lecture videos
Anonymous Feedback	Will be able to submit via google form	If I ever offend you, use an example you are uncomfortable with, or to provide general feedback. Please remain constructive and polit

A quick overview of one possible data cleaning process example 1.View your data (EDA) - commands ('print()', 'dataFrame.head()', 'dataFrame.shape')

2.Compute the missing proportions of data (NANs etc)

3. View each column data type, format, content

4.Check for trailing white spaces in text, eliminate characters that are irrelevant (punctuation, symbols, etc)

5. Explore if any columns need to be split or combined

6.Check uniqueness of values (sanity check)

- <u>https://mne.tools/stable/auto_tutorials/evoked/</u> 20 visualize evoked.html
- <u>https://mne.tools/stable/auto_tutorials/inverse/</u> <u>coords-py</u>

Visualization of neural data

<u>70_eeg_mri_coords.html#sphx-glr-auto-tutorials-inverse-70-eeg-mri-</u>

To the notebook overview

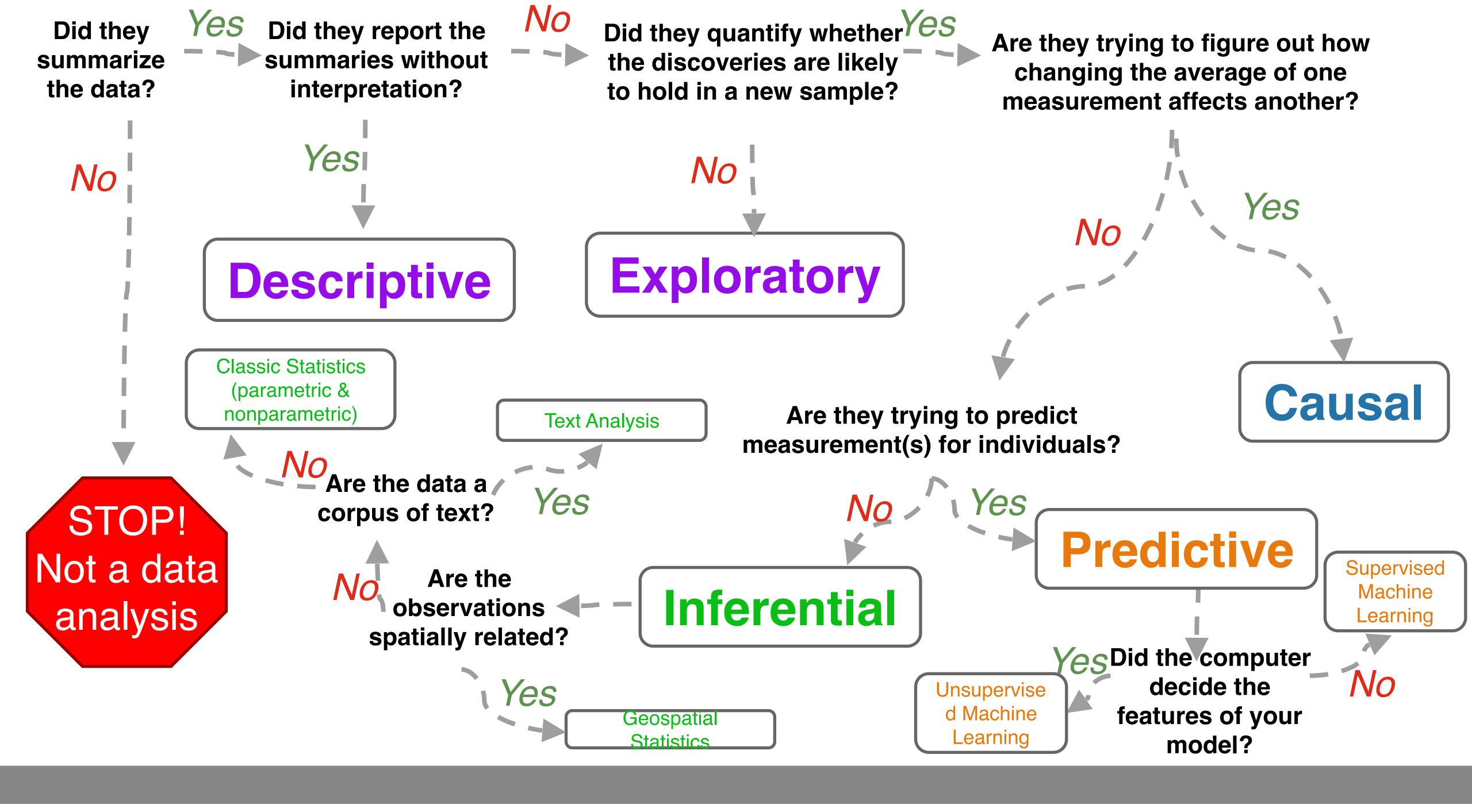
Visualization

Tools:

- seaborn generating plots
- pandas wrangling data
- matplotlib fine-tuning plots

Plotting

- •quantitative data
- categorical data
- Customizing visualizations


On to today...

"Data science is the process of formulating a quantitative question that can be answered with data, collecting and cleaning the data, analyzing the data, and communicating the answer to the question to a relevant audience."

> To do this, you have to look at, describe, and explore the data

Summary: Analytical Approaches

- **Descriptive** (and Exploratory) Data Analysis are the first step(s)
- 2. Inference establishes relationships
 - **Classic Statistics** a.
 - **Geospatial Analysis** b.
 - c. Text Analysis
- 3. Machine Learning is for prediction
 - a. Supervised
 - Unsupervised b.
- Experiments best way to establish the likelihood of causality 4.
 - a. Remember you *cannot* establish causality with computational methods only correlations along with statistical beliefs

Statistical Data Analysis

- There are various definitions

"Statistics" - the science of gathering data and discovering patterns

• "the science that deals with the collection, classification, analysis, and interpretation of numerical facts or data" [dictionary.com]

What are the 2 types of statistics?

What are the 2 types of statistics?

- Descriptive Summari data
- Inferential Modeling, data

• **Descriptive** - Summarizing the characteristics of

• Inferential - Modeling, making 'inferences' from

Descriptive statistics

• Summarizing the characteristics of data

- Central tendency ("center") mean, median, mode
- <u>Variability</u> ("dispersion") variance, standard deviation
- Frequency distribution ("occurrence within data") counts
- Charts, plots, probability distribution shapes

Inferential statistics

- "Modeling" or making 'inferences' from the data
- Taking data from samples and making predictions about populations
- 2 types
 - Estimating parameters
 - Hypothesis tests

Estimating parameters

• Parametric data (data consisting of parameters)

Hypothesis testing

• Non-parametric data (no parameters)

Statistic

"A quantity computed from a <u>sample</u>"

Source: dictionary.com

Populations & Samples

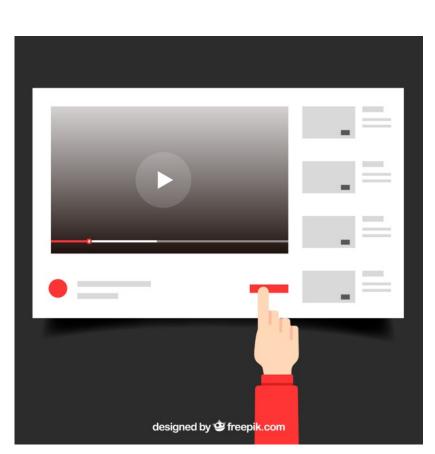
We want to learn something about this..

Image source: keydifferences.com

Our <u>population</u>: *all* Neurons in the motor cortex

Our <u>sample</u>: LFP ~ 1-10k neurons

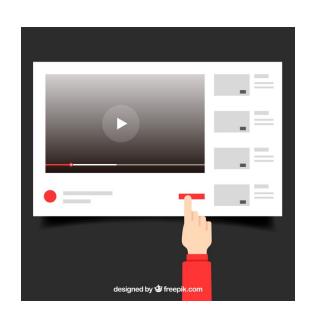
....but we can only actually collect data from this


Sampling

Inference

statistic

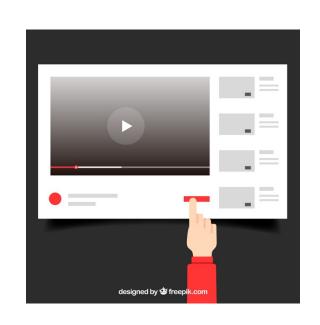
"A quantity computed from a sample"



For our YouTube analysis, we could take a <u>random sample</u> of comments from YouTube and calculate the following statistic: *the number of positive and the number of negative words in each review*.

Source: dictionary.com

Best sampling practices:


- Always think about what your population is Collect data from a sample that is representative of your
- population
- If you have no choice but to work with a dataset that is not collected randomly and is biased, be careful not to generalize your results to the entire population

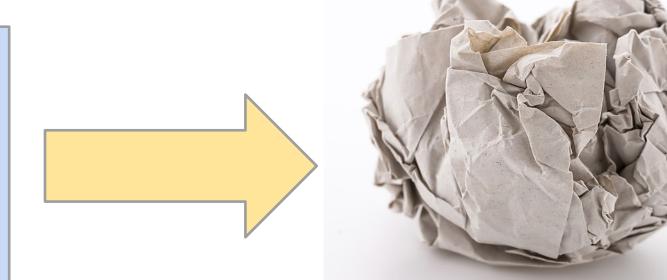
You'd want to be sure you sample randomly across all YouTube comments, making sure not to get more comments from one genre over another, or one location over another, etc.

Examples of bad sampling:

 Surveying subscribers of a Marvel movie toward DC movies shows people like

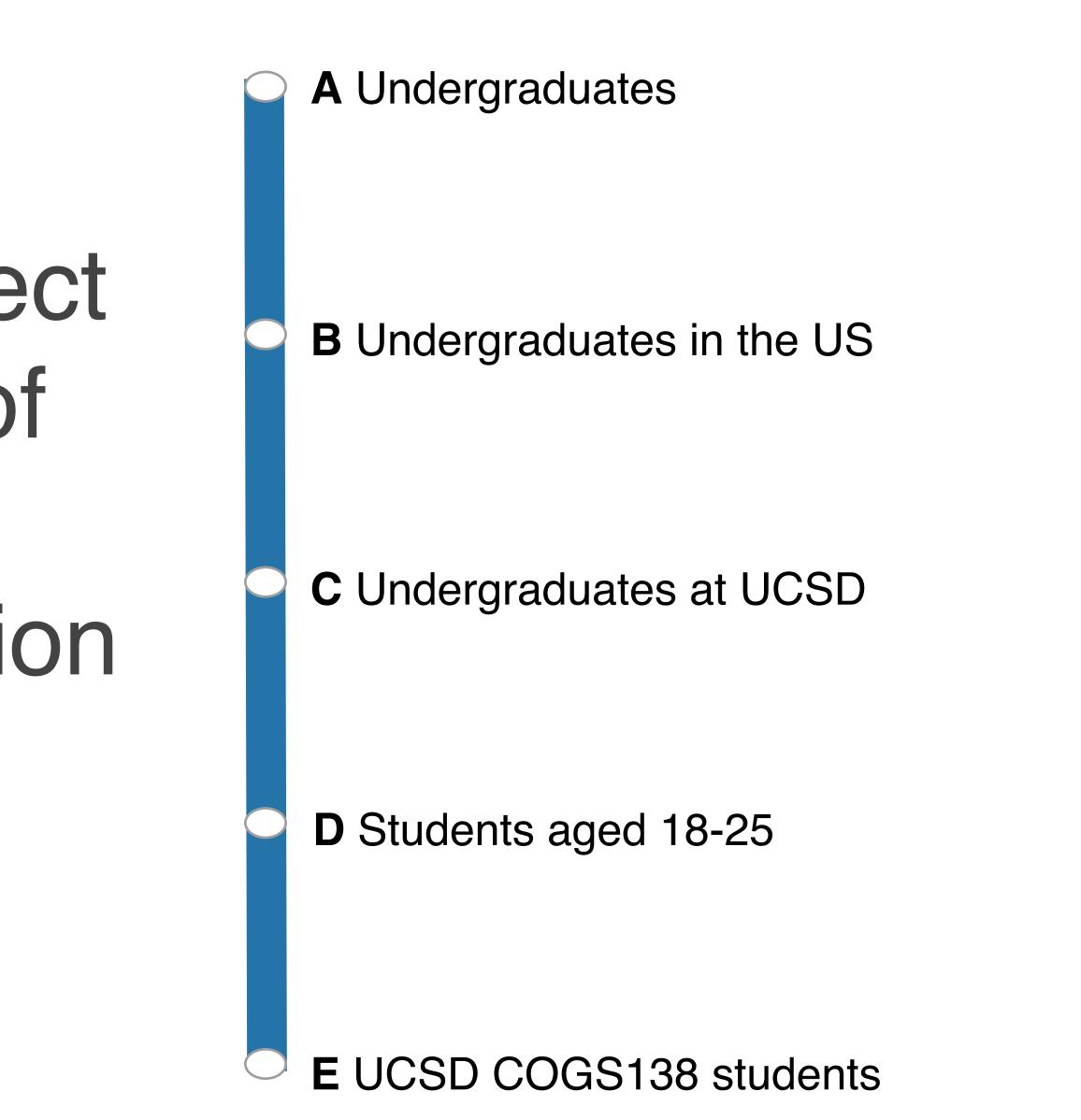
To understand all YouTube comments, you wouldn't just want to sample from one YouTube channel, or videos in a single language.

magazine for research on Americans' attitudes

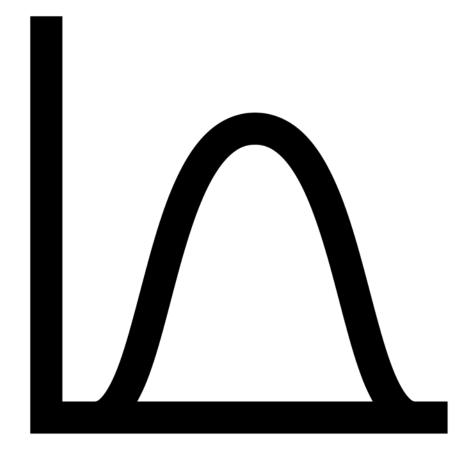

Randomly sampling Facebook users for what TV

It's *always* worth spending time at the <u>beginning</u> of a project to determine whether or not the data you have are garbage. Be certain they are actually able to help you answer the question you're interested in.

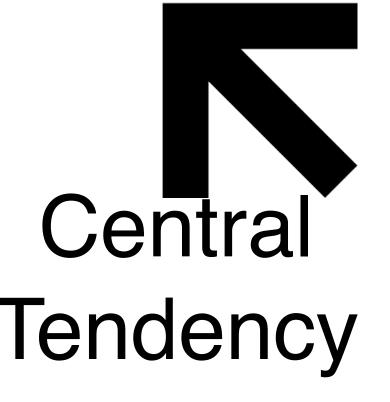
GIGO : Garbage In. Garbage Out.



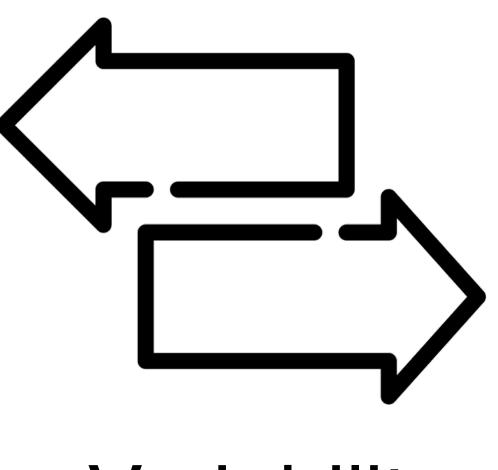
Data Analysis



For survey data I collect from you all, which of the following best describes the population I could generalize findings back to.


Descriptive Analysis

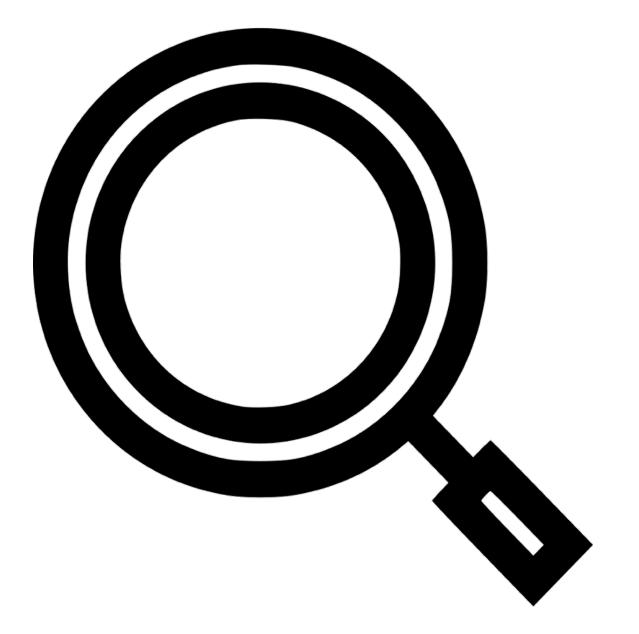
Shape



Size

Missingness

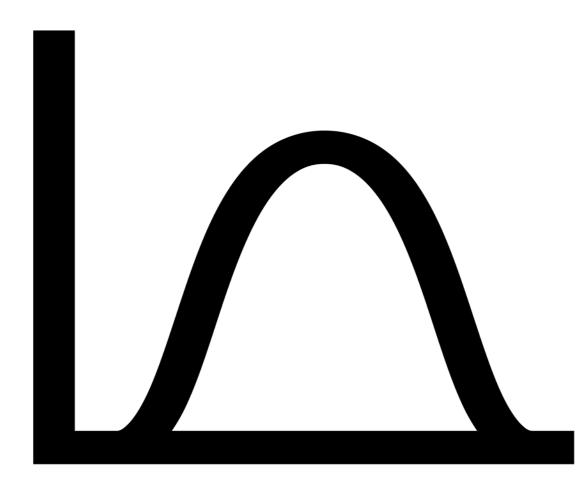
Variability



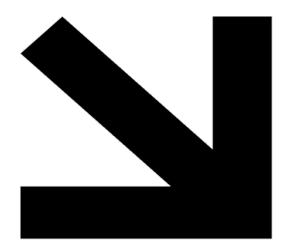
Size

How many <u>observations</u> (rows) and variables (columns) you have is an important first step. You should always be aware of the size of your dataset.

Descriptive


Missingness

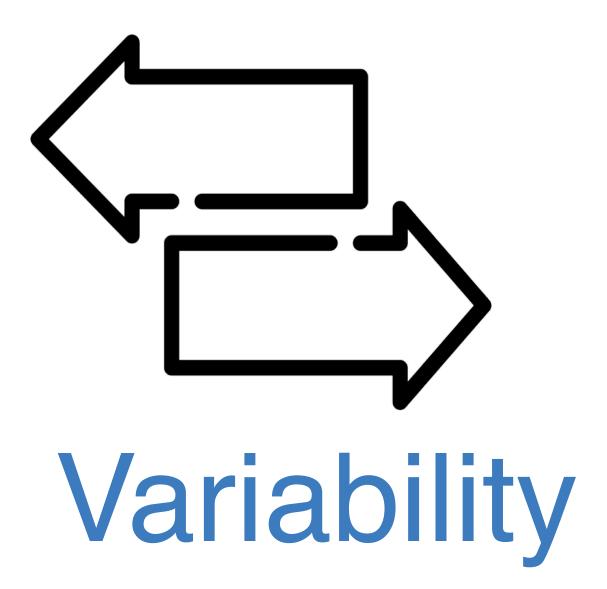
It's critical to know how many observations have missing data for variables of interest in your data. Knowing why their missing is also important.



Shape

It's critical to know the distribution of the variables in your dataset. Certain statistical approaches can only be used with certain distributions.

Central Tendency



Knowing the mean, median, and/or mode can help you get an idea of what a typical value is for your variable(s) of interest

The central tendency tells you part of the story. The variability in the values in your observation helps fill in the rest.

Which of the following is NOT something accomplished by a descriptive analysis?

A Describes typical values in your dataset

B Determines the size of your dataset

C Establishes causal relationships between variables

D Identifies missing data

E Determines how variable values in your dataset are

Descriptive Statistics & Summary

•We look for the summary, the relevant features of the data to the study Use statistics to express them

Descriptive Analyses are often included as "Table 1" in academic publications thelial elevation.

Characteristic Age — no. (%) 50–59 yr 60-69 yr 70–79 yr 80–89 yr ≥90 yr Mean — yr Sex — no. (%) Female Male Race - no. (%) White Other History of myoca History of stroke History of transie Blood pressure -Systolic Diastolic Visual-acuity score 68-82 letters 53-67 letters 38-52 letters 23-37 letters Mean score Total thickness a Retinal thickness at fovea -Foveal center inv Choroidal ne Fluid Hemorrhage Other No choroidal grade

Table 1. Baseline

https://www.nejm.org/doi/full/10.1056/nejmoa1102673

e Characteristics of the Patients.*										
	Ranibizumab Monthly (N=301)	Bevacizumab Monthly (N=286)	Ranibizumab as Needed (N=298)	Bevacizumab as Needed (N=300)						
	2 (0.7)	1 (0.3)	6 (2.0)	2 (0.7)						
	33 (11.0)	28 (9.8)	31 (10.4)	34 (11.3)						
	102 (33.9)	84 (29.4)	115 (38.6)	103 (34.3)						
	142 (47.2)	150 (52.4)	126 (42.3)	142 (47.3)						
	22 (7.3)	23 (8.0)	20 (6.7)	19 (6.3)						
	79.2±7.4	80.1±7.3	78.4±7.8	79.3±7.6						
	183 (60.8)	180 (62.9)	185 (62.1)	184 (61.3)						
	118 (39.2)	106 (37.1)	113 (37.9)	116 (38.7)						
1†										
	297 (98.7)	281 (98.3)	296 (99.3)	294 (98.0)						
	4 (1.3)	5 (1.7)	2 (0.7)	6 (2.0)						
ardial infarction — no. (%)	34 (11.3)	40 (14.0)	30 (10.1)	36 (12.0)						
e — no. (%)	14 (4.7)	18 (6.3)	22 (7.4)	16 (5.3)						
ient ischemic attack — no. (%)	12 (4.0)	25 (8.7)	12 (4.0)	19 (6.3)						
— mm Hg										
	134±18	135±19	136±17	135±17						
	75±10	75±10	76±9	75±10						
ore and Snellen equivalent										
s, 20/25–40 — no. (%)	111 (36.9)	94 (32.9)	116 (38.9)	103 (34.3)						
s, 20/50–80 — no. (%)	98 (32.6)	118 (41.3)	108 (36.2)	119 (39.7)						
s, 20/100–160 — no. (%)	67 (22.3)	53 (18.5)	58 (19.5)	58 (19.3)						
s, 20/200–320 — no. (%)	25 (8.3)	21 (7.3)	16 (5.4)	20 (6.7)						
	60.1±14.3	60.2±13.1	61.5±13.2	60.4±13.4						
at fovea — μ m‡	458±184	463±196	458±193	461±175						
s plus subfoveal-fluid thickness — μm	251±122	254±121	247±122	252±115						
volvement — no. (%)										
eovascularization	176 (58.5)	153 (53.5)	176 (59.1)	183 (61.0)						
	85 (28.2)	81 (28.3)	77 (25.8)	72 (24.0)						
2	20 (6.6)	24 (8.4)	24 (8.1)	25 (8.3)						
	18 (6.0)	20 (7.0)	15 (5.0)	18 (6.0)						
I neovascularization or not possible to	2 (0.7)	8 (2.8)	6 (2.0)	2 (0.7)						

* Plus-minus values are means ±SD.

† Race was self-reported.

🕆 Total thickness at the fovea includes the retina, subretinal fluid, choroidal neovascularization, and retinal pigment epi-

Descriptive

Table 1. Baseline Ch	ble 1. Baseline Characteristics of the Patients.*					
Characteristic		Ranibizumab Monthly (N=301)	Bevacizumab Monthly (N = 286)	Ranibizumab as Needed (N=298)	Bevacizumab as Needed (N=300)	
Age — no. (%)						
50–59 yr		2 (0.7)	1 (0.3)	6 (2.0)	2 (0.7)	
60–69 yr	Shape	33 (11.0)	28 (9.8)	31 (10.4)	34 (11.3)	
70–79 yr	Onapo	102 (33.9)	84 (29.4)	115 (38.6)	103 (34.3)	
80–89 yr		142 (47.2)	150 (52.4)	126 (42.3)	142 (47.3)	
≥90 yr		22 (7.3)	23 (8.0)	20 (6.7)	19 (6.3)	
Mean — yr	Central	79.2: :7.4	SitesV	77.+±7.8	79.3±7.6	
ex — no. (%)			vanc	(K) III y		
Female	tendency	183 (60.8)	180 (62.9)	185 (62.1)	184 (61.3)	
Male	Chachey	118 (39.2)	106 (37.1)	113 (37.9)	116 (38.7)	
Race — no. (%)†						
White		297 (98.7)	281 (98.3)	296 (99.3)	294 (98.0)	
Other		4 (1.3)	5 (1.7)	2 (0.7)	6 (2.0)	

- * Plus-minus values are means ±SD.
- † Race was self-reported.
- Total thickness at the fovea includes the retina, subretinal fluid, choroidal neovascularization, and retinal pigment epithelial elevation.

Descriptive

Zooming in on this we see variables stratified by Age, Sex, and Race

Descriptive Statistics & Summary

Calculating descriptive statistics, understanding what they tell you about your data, and reporting them are critical steps in every analysis.

Exploratory: The goal is to find unknown relationships between the variables you have measured in your data set. Exploratory analysis is open ended and designed to verify expected or find unexpected relationships between measurements.

Exploratory Data Analysis (EDA) detective work answering the question: "What can the data tell us?"

Exploratory

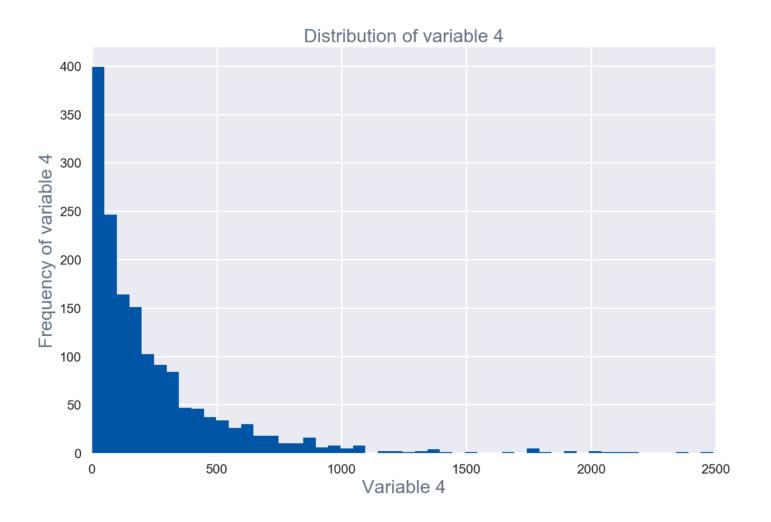


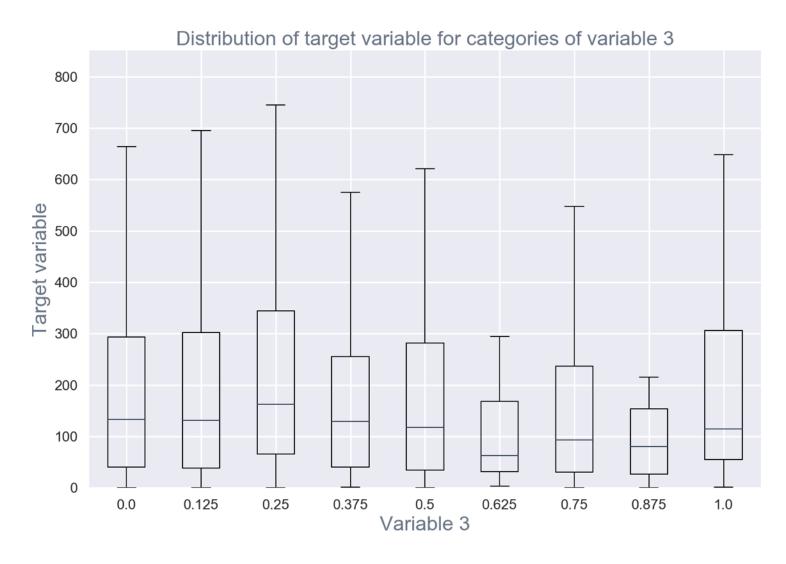
Why EDA?

- Understand data properties
- **Discover** Patterns
- Generate & Frame Hypothesis
- Suggest modeling strategies
- Check assumptions (sanity checks)
- Communicate results (present the data)

....and if you don't, you'll regret it

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant#/media/File:Blind_monks_examining_an_elephant.jpg


The general principles of exploratory analysis:


- Look for missing values
- Look for outlier values
- Calculate numerical summaries
- Generate plots to explore relationships
- Use tables to explore relationships
- If necessary, transform variables

naries relationships tionships riables

EDA Approaches to "Get a Feel for the Data" Understanding the relationship between variables in your dataset

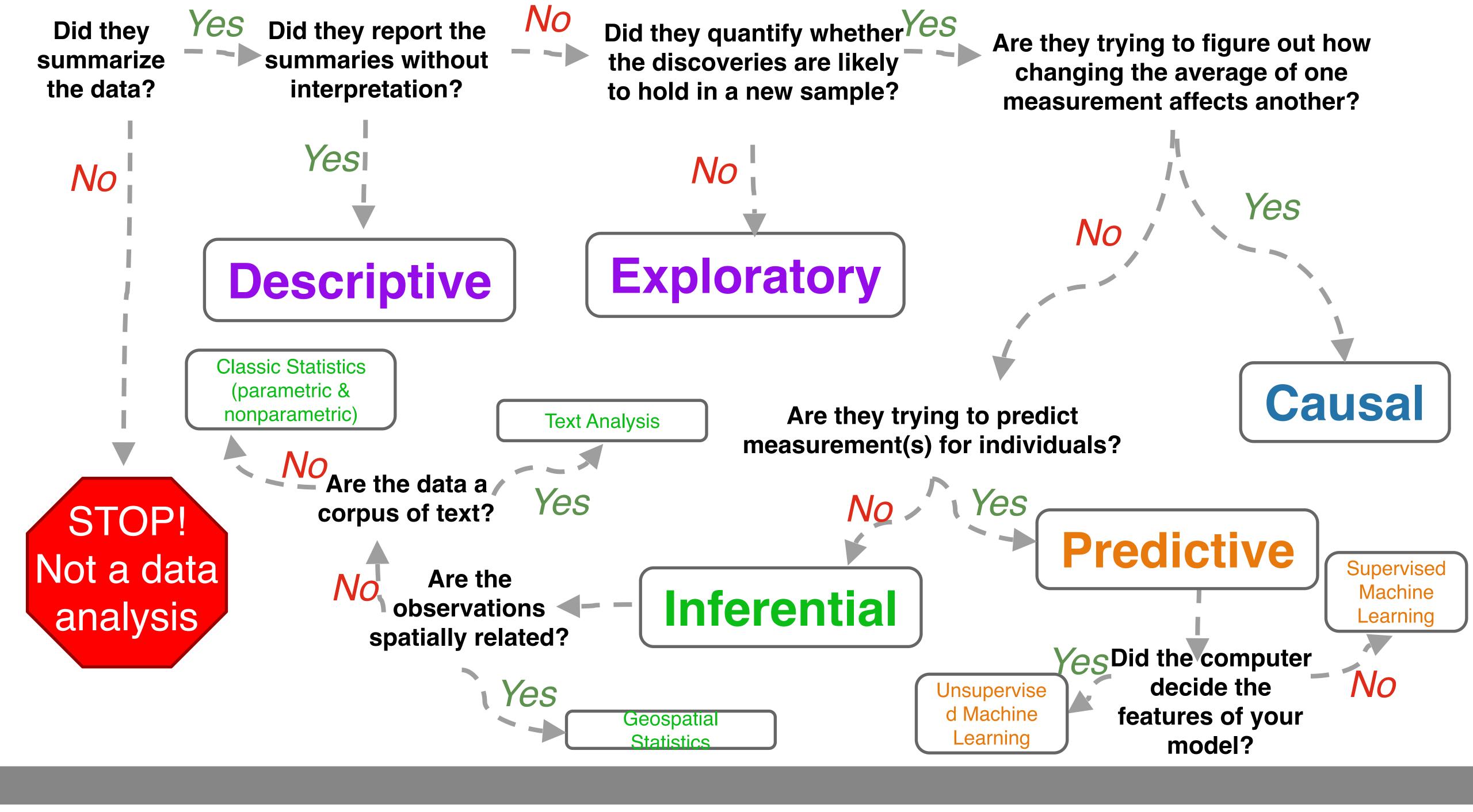
Univariate

understanding a single variable i.e.: histogram, densityplot, barplot

Bivariate

understanding relationship between 2 variables i.e.: boxplot, scatterplot, grouped barplot, boxplot

Image source: <u>https://www.svds.com/value-exploratory-data-analysis/</u>


Dimensionality Reduction

projecting high-D data into a lower-D space

i.e.: PCA, ICA, Clustering

