Complex object manipulation with hierarchical optimal control

Dr. Alex Simpkins and Prof. Emanuel Todorov University of Washington, Seattle

SSCI ADPRL, Paris, France April 11–15, 2011 4/25/11

Object Manipulation

- Controlling the trajectory or state of an object with external forces applied by manipulators
- Complex problem
 - Nonlinearities
 - Contacts/collisions
 - Discontinuities
 - Changing problem
 - Friction
 - Redundancy
 - High dimensionality
 - Under-actuation

Object Manipulation

- Significance/Relevance
 - Interaction with the world is part of learning and normal functioning
 - We explore and process Haptic information, expand knowledge
 - Better method, improved learning
 - Humans are excellent at interacting dynamically with our dynamic world!
 - This is poorly understood from a control/ machine learning perspective
 - Crumple a piece of paper 60 times, you will do it 60 different ways
 - Significant portion of neurons in brain involved in sensorimotor processes
 - Artificial systems need to interact with the world intelligently

Existing approaches

- Manipulation
 - Assume a grip predefined, contacts static/quasistatic
 - Determine forces to move object in prescribed manner
 - Optimal control
- Grasp studies how do humans grasp objects?
 - Quasi-static notion yet again
- Locomotion approaches
 - Manipulation and locomotion are highly related
 - Many of the challenges are similar
 - Relevant locomotion approaches which are promising based upon optimal control and RL
 - Typically hierarchical, often offline components

[Popovic]

[Popovic]

Model

- 2D first step
- Objects

Mass, center of mass, inertia, boundary

- Given # of manipulators
 - Modeled as point masses, since actuators are very capable, and dynamics are approximately linear (dominated by rotor J)
- Simple/efficient/fast contact/collision algorithm here
 - No-slip condition (equivalent to very sticky objects/manipulator end points)
 - Facilitates realtime implementation
 - Parallel GPU processing possible
- 2-part computation total forces on

Object

Manipulators (contact or not)

 F_{1} F_{2} T_{1}^{1} T_{2}^{1} T_{2}^{1} T_{2}^{2} T_{2}^{2} T_{2}^{2}

$$\sum F_{x,o} = \sum_{i} f_{x_{i}} - m_{o}a_{x,o}$$
(1)

$$\sum F_{y,o} = \sum_{i} f_{y_{i}} - m_{o}g - m_{o}a_{y,o}$$

$$\sum M_{o} = \sum_{i} \left(-f_{x}d_{y}(\theta) + f_{y}d_{x}(\theta) \right)_{i} - J\ddot{\theta}_{o}$$

 $a_{x,i} = a_{x,o} + \theta_i d_x(\theta_i)$ $a_{y,i} = a_{y,o} + \ddot{\theta}_i d_y(\theta_i)$

Hierarchical control methodology

- Break up single complex problem into multiple more tractable problems
- Hierarchical allows different strategies at each stage, more freedom
- Behaviors can be encoded at various levels

Force-Cost function

$$F_{e} = K_{e} \frac{(x - x_{c})}{1 + ||x - x_{w}||^{2}}$$
$$F_{s} = K_{s} n ||x - x_{w}||e^{-a(x - x_{c})^{2}}$$
$$F_{t} = F_{e} + F_{s}$$

Mid-Level

- Given required force, and the state of the system
 - What should the individual forces be?
 - · Where should they be applied?
- Optimization and FC function
 - Part I : Arranged as quadratic optimization, terms account for
 - Force tracking error
 - Minimizing individual forces
 - Part II : Virtual force field, similar to a cost function
 - State of system, workspace of each manipulator, location of end effector, location and parameters (or estimated) of object

Experimental tasks

- Given a # of end effectors, manipulate an object of known parameters
 - Grab object, then track some reference for the object
 - Perform continuous rotation of the object in place
 - In both cases manipulator bases are fixed
 - Everything happens due to manipulators, not an arm

Results – force tracking

Results – grasp and track

Results – contact breaking

Conclusions

Contributions

- New dynamic hierarchical control approach to manipulation, also applicable to locomotion
- Minimal manual tweaking (as opposed to some 'painful' methods), tuned with intuitive parameters (only a few), easy to expand behavioral complexity or blend/change behaviors online
- Realtime implementation no offline computation, fast enough to run on real robots
- Manipulation and locomotion treated as the same problem
- Joint limit handling with soft boundary acting as a spring when moving outside workspace, contributes to numerical stability, smoothness, parallels biological systems
- In progress/next steps

- 3D
- Implementation on real robots (object spinning task)
- MPC at lower level vs. force fields (comparison)
- Stability/robustness analysis more quantitative
- Active sensing learn object while manipulating, or manipulate to learn object
- Compare with trajectory methods, also being developed in our lab

Thank you

More information at casimpkinsjr.radiantdolphinpress.com

Appendix – 1

- Ease of tuning high level doesn't affect low level stability
 - Build stable system in pieces if necessary with difficult systems

