Review/Reference of Greek letters, Mathematical Symbols and Operators

C. Alex Simpkins

September 20, 2006

```
1 Greek Letters (Lower case)
\alpha-Alpha
\beta-Beta
\gamma-Gamma
\delta - Delta
    \epsilon}\mathrm{ - Epsilon
    \zeta Zeta
    \eta-Eta
    0 - Theta
    \iota Iota
```

$$
\begin{aligned}
& \kappa-\text { Kappa } \\
& \lambda \text { - Lambda } \\
& \mu-\mathrm{Mu} \\
& \nu-\mathrm{Nu} \\
& \xi-\mathrm{Xi} \\
& o-\mathrm{Omicron} \\
& \pi-\mathrm{Pi} \\
& \rho-\mathrm{Rho} \\
& \sigma-\mathrm{Sigma} \\
& \tau-\mathrm{Tau} \\
& \psi-\mathrm{Upsilon} \\
& \phi-\mathrm{Phi} \\
& \chi-\mathrm{Chi} \\
& \omega-\mathrm{Om} \\
& \hline
\end{aligned}
$$

2 Greek Letters (Upper case)

A - Alpha
B - Beta
Γ - Gamma
Δ - Delta
E-Epsilon
Z - Zeta
H-Eta
Θ - Theta
I - Iota
K - Kappa
Λ - Lambda
$M-\mathrm{Mu}$
$N-\mathrm{Nu}$
$\Xi-X i$

O - Omicron
$\Pi-\mathrm{Pi}$
P - Rho
Σ - Sigma
T - Tau
Υ - Upsilon
Φ - Phi
X - Chi
Ψ - Psi
Ω - Omega

3 Operators and symbols

A^{T} - Transpose of A

A* - Complex Conjugate Transpose of A
A^{-1} - Inverse of A
A^{\dagger} - Pseudoinverse of A
$>$ - Is greater than
$<$ - Is less than
\geq - Is greater than or equal to
\leq - Is less than or equal to
\propto - Is proportional to
ϵ - is in
\sim - is similar to
\approx - is approximately
\gg - is much greater than
$\ll-$ is much less than
\forall - For all
\exists - there exists
$|\mathrm{x}|$ - Absolute value of x
\sqrt{x} - square root of x
$\sqrt[n]{x}-n^{\text {th }}$ root of x
$x^{n}-x$ raised to the power n (i.e. $-x$ times itself n times)
$f^{\prime}(a)$ - The derivative of a function f at $a\left(\operatorname{read}\right.$ as ' f prime of $\left.a^{\prime}\right)$
$\frac{\partial F}{\partial x}$ - Partial derivative of F with respect to the variable x
\dot{F} - the time derivative of F (i.e. $\frac{\partial F}{\partial t}$)
\ddot{F} - the second time derivative of F (i.e. $\frac{\partial^{2} F}{\partial t^{2}}$)
$\sum_{i=0}^{n}\left\{x_{i}\right\}$ - the sum of the elements of the vector x for $i=0$ to n
$\sum_{i}\left\{x_{i}\right\}$ - the sum of the elements of the vector x for all the elements i
$\int F(x) d x$ - Indefinite integral of F with respect to the variable x
$\int_{a}^{b} F(x) d x$ - Definite integral of F with respect to x from a to b
$\prod_{i=0}^{n}\left\{x_{i}\right\}$ - the products of the elements of x for each element from $i=0$ to n (i.e. if $n=2$, then $\prod_{i=0}^{2}\left\{x_{i}\right\}=x_{0} * x_{1} * x_{2}$)
∞ - Infinity

