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Abstract— People learn from the varying environment, and
adapt their control strategy accordingly. This paper explores
two experiments and two methodologies for modeling human
behavior on these tasks within the framework of stochastic
optimal control. In addition, both methods are of interest to
the broader control community because they can be used to
solve interesting nonlinear stochastic optimal control problems
where estimating parameters which allow predictive actions can
minimize cost and improve performance in the system. The
first method is based on a Markov Decision Process, which is
a discrete solution, while the second method is based upon a
continuous function approximation scheme. This second method
augments the states with the Kalman filter estimates, making
the problem fully observable. Control performance is compared
to human subject behavior.

I. INTRODUCTION

To investigate how people learn from the varing environ-
ment and adapt both the estimator and controller accordingly,
the target jump paradigm has been widely used in the biolog-
ical motor control field. Such experimental paradigms consist
of presenting a small visual target to be reached for and of
changing the target position during the movement. Subjects
are informed that target may be purturbed and are required
to adjust their reaching movement towards the new target
location within some time limit [4], [7]. Previous studies
have shown that the hand path is smoothly corrected to reach
the displaced target when the perturbation is introduced early,
whereas such correction is incomplete when the perturbation
happens late in the movement. In a recently study, an
optimal feedback control model was developed to capture
both phenomena. [7]. The authors suggested that the key is
the fact that the optimal feedback gains are time varying. In
another words, the controller is adapting to the constraints
in these tasks. However, in all these studies the direction of
target jump was unpredictable, which leaves the estimator
unstudied. Apparently, people can learn from the statistics
of the world and use such prediction in everyday movement.
For a better comprehension of the characteristics of motor
adaptation, especially how the estimator and controller work
together, two experiments were conducted, where the target
was displaced following certain distributions instead of being
random. The first experiment was to study how the statistics
of target jump may affect the uncertainty of the estimation
and therefore the controller, and the second experiment
aimed to study how perturbation time affects the way people
integrate their estimation and the on-line visual feedback in
controlling hand movement.

II. MODEL DEVELOPMENT

The reaching task was modeled using a variety of control
methods. Some are more optimal with respect to this task
than others, but more complicated.

A. Reaching task

Figure 1 (b) shows the experimental setup, the subject was
making planar reaching movements on a table positioned at
chest level. A 21 inch flatscreen monitor was mounted above
the table facing down and was viewed in a see-through hor-
izontal mirror. In this way computer-generated images could
be physically aligned with the hand workspace. The subject
held in his right hand a small pointer which was represented
by a 2-cm square on the computer monitor, and the target was
represented by a 2-cm diameter ball. The task was to move
the pointer cursor to a starting position, wait for the target
to appear, and move to the target when ready. During the
movement, target was either stationary or displaced rapidly
to the left 10cm or right 10cm, perpendicular to the main
movement. Figure 1(a) shows an example where target jump
to the left at 350msec and the allowed time is 700msec.
Let pj represent the probability vector of jumping directions,
where the first to the third element represnts the probability
of jumping to the left, middle and right. The first experiment
consisted of two blocks with different distributions of jump:
pj two peaks = [0 0.5 0.5 ], p

j three peaks = [0.2 0.1 0.7].
The two distributions were set this way so that their mean
was the same but the variance differed. For both blocks,
perturbation was introduced late during movement. In the
second experiment, pj = [0.1 0.1 0.8] but the perturbation
happened either at the onset of movement (early block) or
late during the movement (late block).

B. Modeling the task with stochastic optimal control with a
single Gaussian (SOCG)

Let h(t) ∈ <nh denote a fully observable state variable
which in this case represents hand position. Let s(t) ∈ <ns

denote a target which needs to be tracked. Let u(t) ∈ <nh be
the control signal which modifies the hand position directly.
Let m(t) ∈ <ns be the estimated final target location.
ωs(t) and ωm(t) represent Brownian motion processes with
covariances Ωs and Ωm, respectively.

But consider that, in this case, it may be more optimal
(a target may be more readily tracked by learning the
probable target destination and predictively moving toward
that estimated state before the target jump occurs. However,
initially there is no model of this probable destination, so a
sensible cost function includes both feedback using the actual
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Fig. 1. Experimental setup

target location and feedback using the estimated target final
state.

The dynamics are assumed linear gaussian,

dh = udt (1)
ds = dωs

dm = dωm.

We assume that h(t) and s(t) are directly observable, but
m(t) is not directly observable and needs to be estimated.

The observation process is

dy = m(t)dt+ dωy (2)

where y(t) corresponds to the integral of the noisy final
target position. Assuming the prior over the initial estimate
is Gaussian, with mean m̂(0) and covariance Σ(0), the
posterior over m(t) remains Gaussian ∀t > 0. The optimal
estimate of the mean and error covariance of the map is
propagated by the Kalman-Bucy filter [1], [11] given the
additive Gaussian white noise model:

dm̂ = K(dy − m̂(t)dt), (3)

K = Σ(t)Ω−1
y ,

dΣ = Ωmdt−K(t)Σ(t)dt.

The mean and covariance of the state estimate is m̂(t) and
Σ(t), respectively, and dωy is a white, zero-mean Gaussian
random process as well, with covariance Ωy .

dωm and dωy are assumed to be uncorrelated. The Kalman
filter can be written in innovations form by expressing m̂(t)
as another stochastic process:

dm̂ = Kdωbm. (4)

Here again ωbm(t) is a standard Brownian motion process
with unit covariance.

Now m̂(t) and Σ(t) act as state variables, and we are
dealing with a fully observable system. Σ(t) is a symmetric
matrix, defined uniquely by its upper-triangular part. Let
σ(t) ∈ <ns represent the vector of upper-triangular elements
of Σ(t).

We now define a composite state vector of our system
which captures the mean and covariance of our target jump
location estimate.

x(t) = [h(t); s(t); m̂(t);σ(t)] (5)

and we write the stochastic dynamics [12] in control affine
form

dx = (a(x) +Bu)dt+ C(x)dω (6)

The uncontrolled dynamics a (x) represent the evolution of
the covariance matrix (note: explicit time dependence is
temporarily dropped in the next three equations for clarity):

a (x) =


0
0
0

f
[
Ωm − ΣTΩ−1

y Σ
]
 . (7)

The controlled dynamics Bu capture the evolution of the
hand state:

B =
[
I 0 0 0

]T
. (8)

The noise-scaling matrix C (x) captures the dependence of
the innovation process on the filter gain matrix, as well as
the covariance of the target movement:

C (x) =


0 √

Ωs

ΣTΩ−1
y

0

 . (9)

Since we have what can be thought of as a tracking task
(with large initial error), one obvious term for the cost rate
is

||h(t)− s(t)||2.

The quadratic function produces fair controllers, but im-
provements are provided by a nonlinear falloff of the cost
(i.e. penalty increases steeply as the hand-target error is
increased). Thus, a more appropriate cost relation is

β
(

1− e−
||h−s||2

γ

)
(10)

where β and γ It also stands to reason that prior knowledge
of the probable final target location should be part of the con-
trol system, since some feedforward component can optimize
task performance, assuming a good prediction of the final
target location can be made. One such cost function includes



a predictive target final location, as well as an uncertainty-
weighting between terms,( ||Σ||

||ΣMAX ||

)
β
(

1− e−
||h−s||2

γ

)
+
(

1− ||Σ||
||ΣMAX ||

)
β
(

1− e−
||h−cm||2

γ

)
.

Define the weighting functions

W =
||Σ||

||ΣMAX ||
(11)

W = 1− ||Σ||
||ΣMAX ||

(where (·) is used here to denote the complement). We can
then add a quadratic control cost to make the cost rate

` (x, u) = Wβ
(

1− e−
||h−s||2

γ

)
(12)

+Wβ
(

1− e−
||h−cm||2

γ

)
+

1
2
||u||2.

C. Markov Decision Process (MDP)

Since the LQG framework don’t allow us to encode different
distributions of target jump, here we tried to solve the optimal
feedback control problem using a Markov Decision Process.
First, the continuous state and action spaces were discretized
[6] and the resulting discrete optimization problem is solved
via dynamic programming [2]. To reduce the dimensionality,
the arm is now modeled as a fully observable second-order
plant with state vector containing hand position p and veloc-
ity v and control vector u corresponding to hand acceleration.
All quantities are expressed in units of centimeters and
seconds. The initial state isp(0) = v(0) = [0; 0]. The default
target position is p∗ = [20; 0] but can be perturbed to either
[20;−10]or [20; 10]. Instead of perturbing the target, we
perturb the hand in the opposite direction (without changing
hand velocity) and then correct the hand and target positions
in the subsequent analysis. In this way, the target can be
treated as constant and omitted from the state vector. Each
trial ends when the horizontal hand position exceeds 20 cm
(i.e., the hand reaches the target plane) or when the duration
exceeds a maximum allowed duration of 0.7 s, whichever
comes first. Let tf denote the duration of a given trial. The
total cost to be minimized, represented by C, is defined as
follows:

C = c(tf ) + wenergy

∫
||u(t)||2dt (13)

The final cost c(tf ), computed at the end of the movement,
is defined as follows:

c(tf ) =

 wtimetf if ||p∗ − p(tf )|| <= 1 and
tf < 0.7 and ||v(tf )|| < vmax

100, otherwise


Noticed that the final cost is not in the quadratic form, as

used in many models of reaching in sensorimotor control and

learning [14],[13]. This is becuase subjects were rewarded
when they hit the target, and punished when they missed
the target. Also, recent studies suggest that people use a
loss function in which the cost increases approximately
quadratically with error for small errors and significantly less
than quadratically for large errors [5]. Therefore, such hit-
miss cost not only represents the experiments more precisely,
but captures the robustness to outliers of our motor system.

III. SOLUTION METHODS

Two solution methods will be compared.
1) Markov Decision Process (MDP):

The feedback control law is in the following general form:

u = π(p, v, t) (14)

where p, v, and t are constrained to the corresponding grids.
Sincee we do not know in advance the form of π, we
represent it as a lookup table that specifies the value of
u for every possible combination of p, v, and t. For each
combination, u is chosen to satisfy the finite horizon Bellman
equation

v(x, k) = min
u
wenergy‖u‖2 + E

x′˜p(|x,u,k)
[v(x′, k+ 1)] (15)

All the biologically related parameters were following [7]
and the only two free parameters wenergy and wtime were
adjusted to better fit the data.

2) SOCG:

Let us consider an infinite horizon discounted cost formu-
lation with discount ζ > 0, for which the Hamilton-Jacobi-
Bellman (HJB) equation is given by

ζv(x) = min
u

{
q(x) +

1
2
‖u‖2 + (a(x) +Bu)T vx (16)

+
1
2
tr(C(x)C(x)T vxx)

}
,

where the subscripts denote partial derivatives.

π(x) = −B(x)vx(x). (17)

The minimized HJB equation is found by dropping the min
operator and substituting (17) into (16)

ζv(x) = q(x) + a(x)T vx(x) (18)

+
1
2
tr(C(x)C(x)T vxx(x))− 1

2
‖π(x)‖2.

Using the method of collocation [3] we will approximate a
continuous time optimal control law. This method is similar
to our recent paper[10]. This can be done with a general
nonlinear (but linear in the to-be-determined parameters wi)
function approximator ( we will refer to this strategy as the
function approximation scheme, or FAS)

v(x,w) =
∑

i

wiφ
i(x) = φT (x)w, (19)



and its first and second derivatives,

vx(x,w) =
∑

i

wiφ
i
x(x) = φT

x (x)w, (20)

vxx(x,w) =
∑

i

wiφ
i
xx(x) = φT

xx(x)w. (21)

with {φi} a set of predefined features[9]. The features we
choose [8] are a combination of Gaussians to fit fine details,
and quadratics for the global approximation (vector to matrix
conversions are implicit here):

φ(x)T
g w =

1√
2πσ

e−[(x−c)TQ(x−c)]w (22)

φ(x)T
q w = xTPx+ Y Tx+ S

where Q = diag(1/var(x)).
The nonlinear partial differential equation for v(x, u) can

be reduced to a linear least squares problem,

Rw = z (23)

which can be solved to arbitrary precision. We get to (23)
by starting with (18), collecting the cost and control terms
on the right side, and those with weights on the left. Then
we define

R =
{
Rj,i =

(
ζφi(xj)T − a(xj)Tφi

x(xj)T (24)

− 1
2
tr{C(xj)C(xj)Tφi

xx(xj)T }
)
,∀i, j

}
,

z =
{
zj = q(xj)− 1

2
‖π(xj)‖2,∀j

}
. (25)

Then computing the weights has been reduced to the least
squares problem. Computing an approximately optimal con-
troller consists of the following algorithm:

1) Randomly generate a set of states {xj} and centers for
the Gaussians {cig} of appropriate range (with nj >
ni).

2) Enforce that at all Gaussian centers have an associated
state by

x1:length(c) = c1:length(c) (26)

3) Compute and store φi(xj), φi
x(xj), φi

xx(xj) ∀i, j
4) Initialize w0 in one of several ways. One way that

works well in practice is to set all w’s to 0
5) Initialize the policy :

π0(xj) = −Bφx(xj)Tw0. (27)

6) Substitute the constraints φi(xj), φi
x(xj), and φi

xx(xj)
into (24), and πk(xj) into (25) to obtain one constraint
on w for every j.

7) Compute the least squares solution to (23) in one of
several ways. For example, compute R†, where ()†

represents the pseudo-inverse, then

wk+1 = R†z. (28)
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Fig. 2. Reaching data. (a) is human subjects averaged data for the second
half of the two types of trials. (b) is the simulated trajectory created by the
MDP solution, (c) and (d) are two forms of the FAS, the former without an
uncertain mixing term, and the latter with an uncertain mixing term. (e) is
human subject data due to the early-late jump paradigm.

Store the R† for all the rest of the computations, since
it only needs to be computed once.

8) Compute πk+1(xj) for every j using (17)
9) Stop if the stopping criterion is met, otherwise go to

step 6. Many criteria are possible, and the one used in
the present results is

ek =
1
nj
‖Mwk − d‖22, dek = ek − ek−1, (29)

if({ek < γ}|{dek < β})−→break, (30)

where γ = 10−3 and β = 10−5 are tolerances . We
also test for divergence:

if({(dek) > λ}|{isnan(dek) == true})−→break,
(31)

where isnan is a test for invalid numbers, and λ =
10−3 is a positive constant which is arbitrary, but can
be on the order of one.

IV. RESULTS

A. Convergence of the FAS

The FAS algorithm converged to within 2e-11 in all
cases, with random (small) weight initialization perturbations
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Fig. 3. (a) Bellman error, using a criterion of 1e-7. In all cases the FAS
algorithm converged on the second iteration. (b) The FAS weights. The first
700 are the Gaussian feature weights, while the last 43 are the quadratic
portion of the features. Note that, indeed, the quadratic terms dominate,
fitting the general shape, while the Gaussians provide fine details for the fit.

about 0. In addition, the algorithm converged on the second
iteration in each case. Similar to our previous paper, the
selection of the number of Gaussians was determined by a
combination of performance criteria (total cost at the end of
each session), and minimization of Bellman Error [10].

B. Comparing human and control system behavior

Fiugre 2 (a) shows the 2d hand trajectory averaged over
all subjects for Experiment 1. Here, only trials in the second
half of each block was included when the movement became
stable and we assume that subjects have acquired the pattern
of target jump. As we can see, initial lateral movement
started right from the onset of movement, followed by a
bigger lateral movement towards the target location after
jumps. Interestingly, early lateral movement, presummably
triggered by the estimation of end target location, is different
for the two distriubtions even their mean is the same. More
spicifically, when target either stayed in the middle or jumped
to the right as in the two-peaks block, the initial movement
was shooting roughly tarwards 5cm to the right, which is
the mean of the jump distribution. However, when there was
a small chance for the target to jump to the left as in the
three-peaks block, subjects tended to not move as much
as in the two-peaks condition. Intuitively, such stragagy is
safe since a big divergence from the middle may cause an
undershoot if target jumped to the opposite direction from
estimation. Figure 2 (b) shows the prediction by the MDP
model. Comparing with human movement, we can see that
the model predicts the result for the two-peaks condition
very well, but not the three-peaks condition. For the later
distribution, rather than starying close to the middle, the
model predicts a bigger initial movement to the right. A close
look of how the value function evolves over time reveals the
reason: since the probability of jumping to the right is much
higher (0.7) than the other two directions (0.2 to the left,
and 0.1 in the middle), the deepest part of the value function
occured far to the right at jump time. If the only goal was
to achieve the smallest value function at each time step, the
controller would move further away from the center.

Figure 2 (c) shows the performance of the FAS without the
uncertainty mixing terms. What is clear is that the prediction
term affects the ability of the controller to reach the desired

target. The issue is that the mean prediction is not at any of
the points, and so a control which blends the predicted and
measured points only by adding the associated trajectories
together will not reach the target. Thus it is clear that a
mixing term is necessary, and as we can see in figure 2 (d),
the target can be reached more closely, while still anticipating
the jump location and reacting before the jump occurs.

Figure 2 (e) shows the mean 2d trajectory for Experiment
2. Again, only the second half of the experiment was
included when the learning effect became stable. Consistent
with Experiment 1, subjects moved to the estimated direction
even before target jumped when the jump happened late
during movement. However, when such perturbation occured
early, initial hand trajectory became straight. To understand
whether this is due to the fact that people didn’t learn at
all in the early block, another experiment was done where
subjects were told explicitly that the target had a much higher
probability to go to the right. Yet still, they wouldn’t use this
knowledge in the movement, but rather fully depend on their
visual feedback of target jump. Intuitively, if tracking the
target is good enough to do the task as in early jump, there
is no need to use estiamtion, which is not as reliable as the
visual feedback of target jump. Therefore, the dependency
of estimation may vary over different jump time, or the
availability of the more reliable sources. Such effect can’t
be accounted for by the MDP (results not shown here).
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