
Linear and Nonlinear Least Squares Regression

C. Alex Simpkins

November 2, 2007

Least squares regression is one useful way to fit a curve to data. The following
derivations are from the partial differential equations approach. This can also be de-
rived with linear algebra in a much more abbreviated set of steps, but that approach
may be more confusing to those less familiar with linear algebra.

1 Linear Least Squares

1.1 Theory and Derivation

Let us begin by considering a set of pairs of x and y data points.

The concept of least squares is to fit a linear or nonlinear curve which fits that data
the best according to some criterion. One such common criterion is the minimization
of the sum of the squared differences between the actual data and the predicted data
due to our least squares line. The error thus defined is given as

E =
M∑
i=1

[yi − yLS(xi)]
2 (1)

Where i = 1, 2, ...M is the number of data points, and yLS is the approximating
curve’s predicted y at the point xi.

There are several reasons why we square the error and then find the minimum of
that function. One of the most notable is to create a function with an attractive bowl
shape and a single global minimum with respect to each line fitting parameter.

1



Figure 1: The following command will generate some random data in matlab with a
linear relationship: x=0:.1:10; y=x+3*rand(size(x)); plot(x,y,’*’);

Figure 2: The classic quadratic ’bowl’ shape

2



This serves to make positive and negative errors all positive (ie if y is bigger than yLS

at point i, the non-squared error is positive, and if yLS is bigger than y at point i, the
non-squared error would be negative- but if we square the error, negative numbers
become positive, so we measure the magnitude of the error). A larger negative error
is still a bigger error! Thus by looking at the sum of the squared error we know
when we are reducing error (making our fit better) or increasing error (making our
fit worse) as we vary our parameters, and we can define a measure of how to find the
’best fit.’

Going back to high school mathematics courses, we recall that the minimum of a
function occurs when the derivative (slope) of that function is zero, and the second
derivative is positive (think of it as the bottom of a valley versus the top of a hill -
we want a valley shape). We have more than one parameter we can vary, so we have
to consider the partial derivative with respect to each parameter.

If we want to fit a line, we have only two parameters, a0 and a1 to fit the line
defined by

yLS = a0 + a1x (2)

Thus our error equation becomes, after substituting yLS in,

E =
M∑
i=1

[yi − (a0 + a1xi)]
2 (3)

To find the parameters a0 and a1 which minimize the error E, we take the partial
derivative with respect to each parameter, a0 and a1 and set each resulting equation
equal to zero.

∂E

∂a0

= 0 (4)

∂E

∂a1

= 0 (5)

∂E

∂a0

=
∂

∂a0

{ M∑
i=1

[yi − (a0 + a1xi)]
2

}
(6)

3



∂E

∂a1

=
∂

∂a1

{ M∑
i=1

[yi − (a0 + a1xi)]
2

}
(7)

Which gives us

∂E

∂a0

= 2
M∑
i=1

[yi − (a0 + a1xi)] (−1) (8)

∂E

∂a1

= 2
M∑
i=1

[yi − (a0 + a1xi)] (−xi) (9)

Which can be simplified by the following steps (note we are working with pairs of
equations)

M∑
i=1

yi =
M∑
i=1

a0 +
M∑
i=1

a1xi (10)

M∑
i=1

yixi =
M∑
i=1

a0xi +
M∑
i=1

a1x
2
i (11)

and

M∑
i=1

yi = a0M + a1

M∑
i=1

xi (12)

M∑
i=1

yixi = a0

M∑
i=1

xi + a1

M∑
i=1

x2
i (13)

Which we can solve by realizing that we have a familiar matrix algebra problem:

a0M + a1

M∑
i=1

xi =
M∑
i=1

yi (14)

a0

M∑
i=1

xi + a1

M∑
i=1

x2
i =

M∑
i=1

yixi (15)

4



[
M

∑M
i=1 xi∑M

i=1 xi

∑M
i=1 x2

i

]{
a0

a1

}
=

{ ∑M
i=1 yi∑M

i=1 yixi

}
(16)

Which, if we set A =

[
M

∑M
i=1 xi∑M

i=1 xi

∑M
i=1 x2

i

]
, p =

{
a0

a1

}
, and k =

{ ∑M
i=1 yi∑M

i=1 yixi

}
is

equivalent to

Ap = k (17)

We can solve this problem by finding the inverse of A (A−1), and multiplying both
sides by A−1. This gives us the parameters of a0 and a1:

p = A−1k (18)

We can find the inverse by Gaussian elimination (or a more efficient algorithm),
which will not be covered here. To find it by hand you could use Cramer’s Rule to
directly solve for a0 and a1. If you are unfamiliar with Gaussian elimination it is
suggested you review the concept from linear algebra[1].

1.2 Matlab implementation

Performing a linear least squares regression in matlab is very simple using the left ma-
trix divide (type help mldivide at the command prompt for more information).

Let’s consider a simple case where you have three points and you want to fit a
straight line using least squares regression. The points are (1,2) (3,4) (2, 3.5). Then
we have x = [1, 3, 2], y = [2, 4, 3.5]. If we substitute the points into the equation for
a straight line we have

a0 + 1a1 = 2 (19)

a0 + 3a1 = 4 (20)

a0 + 2a1 = 3.5 (21)

Which is an over-constrained problem since there is more information than unknowns.

Now we can recognize the canonical linear algebra problem and define A =

 1 1
1 3
1 2

,

5



p =

{
a0

a1

}
, and k =


2
4

3.5

. Then after typing these into matlab, we can solve

for p by writing p = A\k at the command prompt. Matlab promptly solves for p (a0

and a1). If you have more points just add more rows to A and k. Now to plot your
fit over your data, type plot (x,y, ’*’) to plot your actual data. Then create another
pair of points, xs = [0, 5]; ys = p(1) + p(2)*xs; hold on; plot(xs,ys,’r’). Your results
should look like the following:

Figure 3: A basic least squares data fit to three points

6



2 Nonlinear Least Squares

2.1 Theory and Derivation[2]

Not all processes are linear (in fact most real processes are not linear). It is
therefore more appropriate in such cases to have nonlinear data fitting methods.

One basic nonlinear function is a polynomial. Consider that we have a set of data
{xi, yi} with i = 0, 1, ...M data points, and we would like to fit a polynomial of order
n. The general equation for a polynomial is given by

Pn(x) = a0x
0 + a1x

1 + a2x
2 + ... + anx

n (22)

or more compactly written as

Pn(x) =
n∑

k=0

akx
k (23)

Let us find once again the least squares approximation of our data using this
polynomial fit rather than a linear fit. It should be noted that a linear fit is merely
a polynomial of degree one (recall that the degree or order of a polynomial is the
number of the highest power to which a variable in the polynomial equation is raised)
. To compute the least square polynomial fit we will use the same approach as the
linear case. It is important to choose n < M (do not try to fit a polynomial with a
higher order than the number of points of data). Let us begin with

E =
M∑
i=1

[yi − P (xi)]
2 (24)

E =
M∑
i=1

y2
i − 2

M∑
i=1

yiP (xi) +
M∑
i=1

P 2(xi) (25)

E =
M∑
i=1

y2
i − 2

M∑
i=1

yi

[
n∑

k=0

akx
k
i

]
+

M∑
i=1

[
n∑

k=0

akx
k
i

]2

(26)

7



Which we can simplify to

E =
M∑
i=1

y2
i − 2

n∑
k=0

ak

M∑
i=1

yix
k
i +

n∑
h=0

n∑
k=0

ahak

[
M∑
i=1

xh+k
i

]
(27)

Now similar to before, to find the minimum of the error, E, we must find where the
partial derivative with respect to each variable is zero:

∂E

∂ak

= 0 (28)

for each k = 0, 1, 2, ...n

0 =
∂E

∂ak

= −2
M∑
i=1

yix
k
i + 2

n∑
h=0

ah

M∑
i=1

xh+k
i (29)

We now have n+1 equations in n+1 unknown parameters ak. These are referred to
as the normal equations:

n∑
h=0

ah

M∑
i=1

xh+k
i =

M∑
i=1

yix
k
i (30)

k = 0, 1, 2, ...n

Written in this form we may not initially recognize this equation as being simple
to solve. Let us consider this equation in a less short shorthand notation, then take
a step back and look for a pattern.

a0

M∑
i=1

x0
i + a1

M∑
i=1

x1
i + a2

M∑
i=1

x2
i + ... + an

M∑
i=1

xn
i =

M∑
i=1

yix
0
i (31)

a0

M∑
i=1

x1
i + a1

M∑
i=1

x2
i + a2

M∑
i=1

x3
i + ... + an

M∑
i=1

xn+1
i =

M∑
i=1

yix
1
i (32)

.

.

.

8



a0

M∑
i=1

xn
i + a1

M∑
i=1

xn+1
i + a2

M∑
i=1

xn+2
i + ... + an

M∑
i=1

x2n
i =

M∑
i=1

yix
n
i (33)

If we consider this in a matrix algebra perspective, we see that we can put this in
the Ap = k canonical form:

let us define

p =



a0

a1

a2
...

an


(34)

and

k =



∑M
i=1 yi∑M

i=1 yixi∑M
i=1 yix

2
i

...∑M
i=1 yix

n
i


(35)

and finally

A =



∑M
i=1 x0

i

∑M
i=1 x1

i

∑M
i=1 x2

i · · ·
∑M

i=1 xn
i∑M

i=1 x1
i

∑M
i=1 x2

i

∑M
i=1 x3

i · · ·
∑M

i=1 xn+1
i

...
...

...
. . .

...∑M
i=1 xn

i

∑M
i=1 xn+1

i

∑M
i=1 xn+2

i · · ·
∑M

i=1 x2n
i


(36)

9



Then we can write this:



∑M
i=1 x0

i

∑M
i=1 x1

i

∑M
i=1 x2

i · · ·
∑M

i=1 xn
i∑M

i=1 x1
i

∑M
i=1 x2

i

∑M
i=1 x3

i · · ·
∑M

i=1 xn+1
i

...
...

...
. . .

...∑M
i=1 xn

i

∑M
i=1 xn+1

i

∑M
i=1 xn+2

i · · ·
∑M

i=1 x2n
i





a0

a1

a2
...

an


=



∑M
i=1 yi∑M

i=1 yixi∑M
i=1 yix

2
i

...∑M
i=1 yix

n
i


(37)

Or more simply...
Ap = k (38)

p is found by
p = A−1k (39)

Which can be solved, as before by Gaussian elimination, or another (more efficient)
algorithm.

2.2 Matlab implementation

The exact same approach can be used as before to implement this in matlab using
the left matrix divide.

Let’s consider a simple case where you have five points and you want to fit
a quadratic polynomial using least squares regression (quadratic is of degree 2).
The points are (1,2) (3,4) (2, 3.5), (4, 7.5) and (5, 11.5). Then we have x =
[1, 3, 2, 4, 5], y = [2, 4, 3.5, 7.5, 11.5]. If we substitute the points into the equation
for a quadratic polynomial we have

a0 + 1a1 + (1)2a2 = 2 (40)

a0 + 3a1 + (3)2a2 = 4 (41)

a0 + 2a1 + (2)2a2 = 3.5 (42)

a0 + 4a1 + (4)2a2 = 7.5 (43)

10



Which is an over-constrained problem since there is more information than there are
unknowns. Now we can recognize the canonical linear algebra problem and define

A =


1 1 1
1 3 9
1 2 4
1 4 16
1 5 25

, p =


a0

a1

a2

, and k =


2
4

3.5
7.5
11.5

. Then after typing these into

matlab, we can solve for p by writing p = A \ k at the command prompt. Matlab
promptly solves for p, which we assign to a by a = p, ie (a0, a1, and a2). If you have
more points just add more rows to A and k. Now to plot your fit over your data,
type:

x = [1, 3, 2, 4, 5]; y = [2, 4, 3.5, 3.5, 11.5];

plot(x,y,’*r’);

Then create another set of points by creating the x values, and plugging them into
our equation from the least squares fit,

xf = 0.5 : .1 : 6;

yf = a(1) + a(2) ∗ xf + a(3) ∗ xf.2;

hold on; plot(xf, yf,’r’).

Your results should look like the following:

Figure 4: A basic quadratic least squares data fit to four points

11



References

[1] David C. Lay. Linear Algebra and Its Applications. Addison Wesley, 2nd edition
edition, 1996.

[2] F. Talke and N. Delson. Mae 150 course reader. Soft Reserves, UCSD, 9500
Gilman Drive, October 2001.

12


