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1 Description

The first thing to do is review the first chapter of your calculus book, especially
the Stewart Early Transcendentals book.

Having glanced over that, you may have already reminded yourself of what you
need. But if you are still a bit foggy, here’s a quick group of useful rules about limits
and an example problem which is similar to the homework:

1.1 Limit laws

from Stewart, 3rd edition, page 61

Suppose c is a constant and the limits

limx−>af(x) and limx−>ag(x)

exist. Then

1. limx−>a[f(x) + g(x)] = [limx−>af(x)] + [limx−>ag(x)]

2. limx−>a[f(x)− g(x)] = [limx−>af(x)]− [limx−>ag(x)]

3. limx−>a[cf(x)] = c[limx−>af(x)]

4. limx−>a[f(x) ∗ g(x)] = [limx−>af(x)] ∗ [limx−>ag(x)]
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5. limx−>a[ (x)
g(x)

] = [limx−>af(x)]
[limx−>ag(x)]

if [limx−>ag(x)] 6= 0

6. limx−>a[f(x)]n = [[limx−>af(x)]n where n is a positive integer

7. limx−>ac = c

8. limx−>ax = a

9. limx−>ax
n = an where n is a positive integer

10. limx−>a
n
√

x = n
√

a where n is a positive integer (If n is even, we assume that
a¿0.)

11. limx−>a
n
√

f(x) = n
√

limx−>af(x) where n is a positive integer (If n is even, we
assume that limx−>af(x) > 0

1.2 Definitions

from Stewart, 3rd edition, page 82

1. A function f is continuous at a number a if

limx−>af(x) = f(a)

2. a function f is continuous from the right at a number a if

limx−>a+f(x) = f(a)

and f is continuous from the left at a if

limx−>a−f(x) = f(a)

3. A function f is continuous on an interval if it is continuous at every number
in the interval. (At an endpoint of the interval we understand continuous to
mean continuous from the right or continuous from the left.)

1.3 Example

Show that the function f(x)=1-x is continuous on the interval [-1,1].

Solution: If −1 < a < 1, then using the limit laws, we have

limx−>af(x) = limx−>a(1− x)
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= 1− limx−>a(x)

= 1− a = f(a)

Thus by definition 1, f is continuous at a if −1 < a < 1. We must also calculate the
right-hand limit at -1 and the left hand limit at 1.

limx−>−1+f(x) = limx−>−1+(1− x)

= 1− limx−>−1+(x)

= 1− (−1)

= 2 = f(−1)

So f is continuous from the right at -1. Similarly,

limx−>1−f(x) = limx−>1−(1− x)

= 1− limx−>1−(x)

= 1− (1)

= 0 = f(1)

So f is continuous from the left at 1. Therefore, according to Definition 3, f is
continuous on [-1,1] (recall that the ”[.]” brackets mean including those points).
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