Lecture 9 Cogsci 109

Wed. Oct. 17, 2007
How to create colormaps, meshgrid application, and computing basic statistics I (central tendency)

Outline for today

- Announcements
- Matlab demonstrations - loading data, then...
\square Creating and applying color maps
\square Creating pcolor and surf plots
- How to input data

■ How to make the axes scale appropriately - meshgrid command

Outline for today (II)

- Super-/sub-sampling
\square Definitions
\square Examples
\square When you use one vs. another
- Computing basic statistics
\square Looking at data quantitatively
\square Central tendency - Mean, median, mode
- Definitions
- distributions
- Examples from last year's surveys

Announcements

■ Hw2
\square grade distributions
\square In future - turn in all info at once, or if not, the first version is a placeholder - and must have a clear page stating such, second is the one that will be graded, so it must be complete
■ Hw3
\square questions?
\square Formatting details - grouping and organization

Announcements |I

- Midterm is coming up somewhere in the next couple of weeks
\square Anything lectured on, presented in section, in the reading and on homework is fair game
\square Will be part multiple choice, part short answer
\square Any calculations will be simple
\square Programming questions will be fairly qualitative
\square A practice midterm will be posted
- You should study this carefully

Matlab demonstrations

- Loading data, then
\square Creating and applying color maps
\square Creating pcolor and surf plots
- Methods of Inputting data
- meshgrid command
\square Scaling axes appropriately

Super-/sub-sampling

- Super-sampling (up-sampling)

$$
y(n)=\left\{\begin{array}{cc}
x\left(\frac{n}{N}\right), & n=0, \pm N, \pm 2 N \\
0, & \text { otherwise }
\end{array}\right.
$$

- Sub-sampling (down-sampling)
\square Take every M-th sample

$$
y(n)=x(M n)
$$

$\square 1000 \mathrm{~Hz}$ sample rate becomes 100 Hz sample rate if we down sample by a factor of 10

What does super-sampling look like?

What does super-sampling look

 like?

Example: Up-sampling

Why add only zeros?

- If you want temporal matching of events, but you had different sample rates for different recording instruments
\square i.e. - data matching...
- 200 Hz movement sensors (Polhemus Liberty 6dof sensors)
- 50 Hz simulation VR update
- 1 kHz EEG recording
\square How would we compare all this data in an event-related setting?
- One way - Up-sample or down-sample to make sample rates match
- Another way - interpolate (we'll cover this in a later lecture)

Are there other ways to do

this?

- We could also interpolate the points instead of adding zeros...but that involves data fitting which we'll discuss soon

What does sub-sampling look like?

What does sub-sampling look like?

Then the sub-sampled data looks like

Quantitatively: Another way to

‘look’ at data

- How do we look at data quantitatively and extract meaningful information?
- Computing basic statistics is a start
\square Mode
\square Mean
\square Median
\square Standard Deviation
\square Variance
\square Covariance
\square Correlation

Central Tendency - Mode

- Most common number of a distribution
- Tells you which value has the highest frequency

■ What if there are ties?
\square More than one mode!
\square Which of the following is the mode?

$$
\{1,2,2,2,2,2,2,3,4,5,6,7,8,8,8,9,9\}
$$

$\square 2$

- Matlab help: help mode

Central Tendency - Mean

- Think of it as similar to a balance point
- 'Expected value'
- Computed by the following
\square Sum all scores
\square Divide that sum by the number of scores
- Here's the formula:
- And an example:

$$
M=\left(\sum_{i=1}^{N} x_{i}\right) / N
$$

$$
\begin{aligned}
& \{1.0,1.0,2.0,3.0,4.0,4.0,4.0,4.0,8.0,8.0,8.0,8.0,8.0,8.0,9.0,0.0,0.0,0.0\} \\
& N=18 \\
& \sum x_{i}=80.0 \\
& M=\left(\sum x_{i}\right) / N=80.0 / 18=4.4
\end{aligned}
$$

How to compute the mean in Matlab

- Function : mean()
- Side note about matlab help and capitals
- Example computation...
- Matlab help : help mean

Median

- The middle number of a distribution when the numbers have been ordered (sorted)
- Each score is counted separately, so if you have repeating scores such as 50 and 50 , each one becomes part of the count
- Order the scores from low to high or high to low
- Count from both ends to the middle position

Median

- If odd number of scores, there will be one median
\square Example: Find the median

$$
\begin{aligned}
& \{1,2,3,10,50\} \\
& \text { Median }=3
\end{aligned}
$$

- If an even number of scores, count to the two closest to the middle (ie count from low towards high, high towards low) and take their average (add them up and divide by two)
\square Example: Find the median

$$
\begin{aligned}
& \{1,2,2,3,3,4\} \\
& 2,3 \\
& \text { Median }=(2+3) / 2=2.5
\end{aligned}
$$

How to compute the median in matlab

- Function median()
- Example
- Matlab help: help median

How are they related?

- If you have a...
\square Normal distribution,
- Mean=Median=Mode
\square Symmetric distribution
- Median = Mean
\square Skew distribution
- Median towards the body, mean towards the tail
\square +skew: mean>median
\square-skew: mean<median
- But this doesn't seem to be saying everything...

The mean isn't everything! These all have the same mean

