CogSci109 Lecture 8

Mon, Oct. 15, 2007
More color theory, visualization, effective representation

Outline for today (Part I)

- Announcements
\square Homework 2 grade back wed
\square Homework 3 is online
- Description
- FAQ

■ Quick review and remider of motivation

Outline for today (Part II)

- Visualization II - representing your data and communicating basic results effectively (part A)
\square Being sensitive to perception
- Contrast tables
\square How contrast tables can be used to improve how you communicate results
- Mach Banding
\square Perceptual boundary phenomena and proper use
- Context-dependence of colors and lightness
\square Use context of colors to emphasize differences or create subtle flow

Outline for today (Part III)

- Visualization II - representing your data and communicating basic results effectively (Part B)
\square Encoding information
- Color models
\square RGB, CMY, HSV
\square Geometric representation
- False color representation and color maps to expose hidden info

Typical color maps
\square Know your output media

- Color gamuts
\square printers, displays, video, etc
relation to perceptual gamuts
- Strengths and weaknesses of display technologies

Quick reminder - why are we studying visualization?

- Human brain has trouble making sense of large amounts of data produced by computational modeling and experimentation
- As more computational methods are applied, more and more information is being created
- Scientific visualization is one way of making important information explicit and simple to process

Luminance equation reviewed

■ Perceived intensity $\quad Y=.30 * R e d+.59 * G r e e n+.11 * B l u e$ due to a color
\square Different
contributions of red/green/blue components
\square Empirically determined

z Contrast Table

	Elask	White	Red	cricen	Elue	cyar	Msatenta	Orame	Yellow
EThat	0.00	1.00	0.80	0.08	0.11	0.70	0.41	0. Ct	0.18
White	1.00	0.00	0.70	0.41	0.88	0.010	0.81	0.41	0.11
Red	0.til	0.20	0.00	0.20	0.18	0.40	0.11	0.80	0.88
crien	0.08	0.41	0.76	0.06	0.48	0.11	0.14	0.61	0.30
Alue	0.11	0.88	0.15	0.44	0.00	0. as	0.80	0.45	0.70
cyan	0.70	0.30	0.40	0.11	0.83	0.00	0.48	0.11	0.16
Magenta	041	0.88	0.11	0.14	0.80	0.28	0.06	0.13	0.48
Orange	0.00	0.41	0.80	0.01	0,48	0.11	0.16	0.00	0.30
Yelow	0.88	0.11	0.8	0.00	0.71	0.19	0.40	0.80	0.00

What's Wrong with this Picture?

What's Right with this Picture?

Bearex:

Beware of Mach Banding

Recall that perceived color

 intensity is also contextdependent

Perceived lightness is contextdependent as well

- The lightness of the light squares in the shadow is the same as the lightness of the dark squares in the unshaded region

RGB and CMY color cubes

■ Map (r,g,b)->(x,y,z) or ($\mathrm{c}, \mathrm{m}, \mathrm{y})->(\mathrm{x}, \mathrm{y}, \mathrm{z})$
■ Combinations of primary color components (R, G, B) use to produce any desired color

■ The two spaces are complements of each other

HSV color cone

- Hue
\square the various colors we perceive
\square Each has its own unique wavelength
- Saturation
\square Also called chroma
\square Comparison of color to neutral gray
\square Richness of color
\square 100\% - pure color, 0\% gray

To convert from HSV to RGB, see: Foley, Van Dam, Feiner, and Hughes, Computer Graphics: Principles and Practices, Addison-Wesley, 1990.

- Value
\square Lightness or darkness of a hue, or achromatic color
\square Lower when darker, higher when lighter

False color representation

and color maps

- Map values from any range to a map of colors
\square (ie a matrix of $\mathbf{0 - 1}$ range -> white-black)

Typical color maps

■ Gray scale - get gray by setting all three color values to the same

- Intensity and saturation color scales- we often feel intuitively that black means nothing

More color maps

-Two color interpolation - blue->red, interesting, bad visually, but strong meaning
-Generally you put white in center, otherwise magenta in middle means nothing

A few more color maps

■ Rainbow color scale - magenta is not directly in the em spectrum

■ Heated object color scale - intensity increases left -> right

- Color scale contours

Different display technologies have different limitations
 - CRT
 \square Widest color gamut
 \square Fast refresh for high performance VR applications
 \square Still narrower gamut than human perception
 \square Cheaper than LCDs
 \square Multiple resolutions

- LCD
\square Slow response ('refresh')
\square Less colors than CRT typically, but improving
\square Tough
\square Not good for extreme temperatures
\square Multiple resolutions are interpolated, not true changes

More on different displays

- Color printer
\square Subtractive color
\square Narrow color gamut
\square Realize that you may have a $\mathbf{\$ 5 0 0}$ color printer with photorealistic detail IF you use the special paper, but others may not
- NTSC TV
\square Narrow color gamut, slow refresh, interlacing
- Film
\square Fairly wide color gamut
\square Good resolution typically

Comparison of typical color

 gamuts- Try to stay away from the regions which cannot be printed when creating images for papers, or convert them beforehand

Output

- If you are creating visualizations for multiple contexts (video, computer monitors, printed papers, faxes, etc) be aware of device limitations
- Use redundant encoding of information if you don't know what the output is or who will be looking at it
\square Different fonts
\square Symbols
\square Fill pattern
\square Outline pattern
\square Outline thickness

A final word about colors...

■ Just because you have 2^{24} different colors
■ Doesn't mean you have to use them all...

