
CogSci109 Lecture 6

Wed, Oct. 10, 2007

Fourier transforms, Low-pass filtering, High-
pass filtering, two filters and their code

Outline for today

 Announcements
 Review of last time
 A bit more about linearity vs. nonlinearity and why this is

an important point in modeling
 A bit more about Fourier analysis, frequency response,

and how to do them in matlab
 Low-Pass filtering your data

 Moving average

 Recursive low pass filtering

 High-Pass filtering your data
 How to derive a high pass filter from a low-pass filter

Announcements

 Recordings are up
 OCE accounts for remote login
 Homework assigned Friday

 I want to go through more info first, and give you a
reading or two which will help you with your
assignment

 Reading will be assigned tonight late, please at
least look over it before starting the assignment on
Friday

Last time -

 We went over several examples of discretization,
sampling and aliasing

 Mentioned fourier transforms and frequency
analysis
 We’ll need that for our discussion of filtering today

More on linearity vs.
nonlinearity
 Power

 A linear system is a system whose dependent variables
are related to its independent variables by a power of one

 Linear systems have these particular properties (and they
are very favorable)
 Additivity

 homogeneous

 Linear differential equations are more well-understood
than nonlinear differential equations

Fourier transforms

 Frequency domain example : Musical note vs. the sound
 More parsimonious to describe a song in terms of its

notes than time domain signal (when creating a ‘model’
for a song which can be communicated)

 Reading will cover the mathematical details and be more
in depth
 I will provide example code for performing Fourier

analysis, and computing a Frequency response in Matlab

 We’ll come back to fourier transforms when creating
basic models, and analyzing the properties of the filters
we discuss today

We return to noisy data which
we want to ‘clean up’
 We do this by removing undesired components of

the signal

 One way to do this is averaging out the noise

 If it’s Gaussian and additive…

This is gaussian noise,
and the average of this
is approximately the
green line, 0

-5 + 5 = 0

How to do it
 Decide on a ‘window’ of

data to average over, which
is narrower than the fastest
component to your
changing signal

 Sum up over that window
of points and divide by the
number of points (average)

Continuous form Discrete form

A few details

 What about at the ends of the data where we don’t
have information before (at the beginning of the
data set) or after (at the end of the data set)?
 Copy the first or last point and repeat as necessary

Actual data
Repeated
points

Repeated
points

Beginning of set End of set

Window size of 2
Avg.
Pt.

Disadvantages…

 Need to have all data in memory already, so it
isn’t an ‘online’ filter

 Causality
 If we care about an exact event timing, this is a

poor filter to use:

Signal anticipates
changes!

Solution…

 Recursive filter
 Simple to implement

 Solves causality problems

