CogSci109 Lecture 6

Wed, Oct. 10, 2007

Fourier transforms, Low-pass filtering, High-
pass filtering, two filters and their code



Outline for today

B Announcements
m Review of last time

m A bit more about linearity vs. nonlinearity and why this 1s
an important point in modeling

m A bit more about Fourier analysis, frequency response,
and how to do them 1n matlab

m [ow-Pass filtering your data
Moving average
Recursive low pass filtering

m High-Pass filtering your data

How to derive a high pass filter from a low-pass filter



Announcements

m Recordings are up
m OCE accounts for remote login
m Homework assigned Friday

I want to go through more info first, and give you a
reading or two which will help you with your
assignment

Reading will be assigned tonight late, please at
least look over it before starting the assignment on
Friday



Last time -

m We went over several examples of discretization,
sampling and aliasing

m Mentioned fourier transforms and frequency
analysis

We’ll need that for our discussion of filtering today



More on linearity vs.
nonlinearity

m Power

A linear system is a system whose dependent variables
are related to its independent variables by a power of one

m Linear systems have these particular properties (and they
are very favorable)

Additivity T[z1(n) + zo(n)] = Tz (n)] + T[x2(n)]

homogeneous 1'[cz(n)] = cT'|z(n)]

m Linear differential equations are more well-understood
than nonlinear differential equations



Fourier transforms

®m Frequency domain example : Musical note vs. the sound
More parsimonious to describe a song in terms of its
notes than time domain signal (when creating a ‘model’
for a song which can be communicated)
m Reading will cover the mathematical details and be more
in depth
1 will provide example code for performing Fourier
analysis, and computing a Frequency response in Matlab
m We’ll come back to fourier transforms when creating
basic models, and analyzing the properties of the filters
we discuss today



"
We return to noisy data which
we want to ‘clean up’

m We do this by removing undesired components of
the signal

m One way to do this 1s averaging out the noise
m If it’s Gaussian and additive...

This 1s gaussian noise,
and the average of this
1s approximately the
green line, 0

S5+5=0

5 10 15 20 25 30 35
time (sec)




=
How to do it

m Decide on a ‘window’ of
data to average over, which
is narrower than the fastest
component to your
changing signal

E Sum up over that window
of points and divide by the
number of points (average)

Typical noisy signal

Average point at t; ;

Amplitude (Volts)
(=)

Time (sec)

Continuous form

7 (t) = ft T nr

_tD

Discrete form

() = op 1 Z z(j)

1 i+k

j=i—k




=
A few details

m What about at the ends of the data where we don’t
have information before (at the beginning of the
data set) or after (at the end of the data set)?

Copy the first or last point and repeat as necessary

z(j) = 2(0),Vj <0
Window size of 2 _ _
S , 2(j) = 2(n),Vj > n

f

Repeated Repeated

Actual data

points points

Beginning of set End of set



Disadvantages...

m Need to have all data in memory already, so it
isn’t an ‘online’ filter

m Causality

If we care about an exact event timing, this is a
poor filter to use:

\ Signal anticipates

\\ changes!




Solution...

m Recursive filter
Simple to implement

Solves causality problems



