### Lecture 5 Cogsci 109

More sampling, discretization, and Filtering Mon. Oct. 8, 2007

## **Outline for today**

- Announcements
- Some programming issues
  - More on the dot operator, what exactly does it mean?
  - Symbolic manipulation, indices and elements of matrices
  - Primes and latex
- Motivating examples
  - Discretization examples (therapeutic, visual, auditory)
  - Aliasing effects examples
- Filtering theory
  - Fourier transforms (concept, demos)- Frequency analysis
    - Low frequencies vs. high frequencies
  - Filters removing unnecessary data
    - LowPass filter definition, advantages, disadvantages
      - Moving average
      - Recursive filter
    - HighPass filter definition, advantages, disadvantages
      - From low pass to high pass

#### Announcements

#### Homework 2 is due

- If you are having issues with the assignment, don't stress out, come talk to me after class and we'll figure out what to do
- Homework 3 will be assigned Wednesday

## Some matlab programming issues

The dot operator

#### What exactly does element-wise mean?

- Taking *each* value in a variable and performing an operation one element at a time, moving through all the elements in the variable
- Example:

What you see is the final result, but what is happening is:

 $y(1)=0^2$ , then  $y(2)=1^2$ , then  $y(3)=2^2$ , then  $y(4)=3^2$ , then  $y(5)=5^2$ 

# Visual concept of the effects of the dot operator



# What happens if you don't use the dot operator?

Usually you get an error if you're trying to perform some calculation like y=x^2, because Matlab tries to do this:



And it becomes a problem since we're then trying to multiply an nx1 matrix by an nx1 matrix, and The second n and the first 1 are different sizes!!!

## More programming issues in Matlab

#### □ When is it appropriate NOT to use the dot operator?

When we're wanting to perform matrix operations, such as the matrix A times the vector b, or another matrix of appropriate size



## **Other quick Matlab tips...**

- Accessing particular elements in an array or matrix
- Matlab starts its indices at 1, not 0
- Tip: if you want to put primes into the title of a matlab figure, you can use a latex command to make a superscript as follows: x^{|}
- Symbolic manipulation you can create symbolic variables by using the 'sym' command (type 'help sym' in the matlab command prompt)
  - Symbolic manipulation can be performed in many ways in matlab (built on maple)

## Example : Cognitive Therapy - application of discretization strategy to treating depression

- Generalization
- Typically the therapist teaches clients to correctly discretize into separate partitions rather than one continuous generalization



#### **Examples: Visual discretization**

#### Color shading

6 levels

#### 256 levels

Color and visual boundaries:

Few colors and low spatial resolution



Low spatial resolution only



High spatial resolution and colors



#### **Auditory examples**

#### Sampling rates

Raisin nuts cereal add

### **Example: Sampling and Aliasing**

■ The wheel spokes example...<Live demo>



We're sampling at too slow a rate to accurately see the spokes rotate, and at a particular rotational velocity of the wheel, we see an 'aliased' reverse rotation!



### **Obviously aliasing can be bad...**

Aliasing can lead to improper interpretations of data

#### So what do we do about it?

- We must first sample at twice the rate of the fastest signal we care about
- Filter our data (humans do this, and so do cognitive scientists!)

#### Thus we *filter* our data...

Filter - an operation or process which alters input data according to some mathematical relationship or heuristic rule to produce output data which is more desirable



#### **Human filtering examples**

- Auditory filtering (filtering out unwanted conversations in a crowded room to hear one person)
- **Conceptual filtering** (filtering the stream of words and concepts to acquire relevant principles and discard irrelevant ones)
- Socio-behavioral filtering (filtering the stream of individuals in ones life, removing the undesired individuals while associating with desired individuals - happens by behavioral patterns of living alone, as well as cognitive processes)

#### **Computational filtering**

- Noisy auditory data can be filtered to remove undesired signals
- EEG signals can be filtered to remove 60Hz noise from AC lines nearby
- Other sensor signals can be filtered to improve results

#### **Frequency analysis**

- Any time domain signal can be decomposed into a corresponding sum of sine waves
- Sometimes this is an easier way to describe a signal
- Other times this allows us to separate the components we care about from those we don't
- We can compute a frequency-domain representation of a signal by taking the Fourier Transform
  - Tells us how much energy out of the total energy of the signal is contributed by a particular frequency range
- Music example

#### **Frequency Response**

- Linearity of systems vs. nonlinearity
- The response of a linear system to a sinusoidal input is a sinusoidal output with the amplitude and phase shifted in some way
- This is useful for characterizing the behavior of some signal over a range of possible input frequencies
- Example with the chalk

# Common filter types in signal processing

- Low-pass filter (ideal) attenuates high frequency data, while allowing low frequency data to pass unchanged
- High-pass filter (ideal) attenuates low frequency data, while allowing high frequency data to pass unchanged
- Band-pass filter (ideal) attenuates all frequencies except a particular frequency band (or bands)
- Band-stop filter (ideal) attenuates one or a selection of frequency ranges of data, allowing all the rest to pass unchanged
- Actual filters are not exactly ideal...which we will discuss

# Filters we'll go through in the next couple of days...

- Low-pass filter
- High-pass filter

#### Signals and noise...

- By making assumptions about the properties of the unwanted 'noise' *e(t)*, we can reconstruct an appropriate *estimate* of the original signal *s(t)* 
  - Noise any unwanted portion of a signal, lumped together. It may come from multiple sources but tends toward some statistically predictable properties



#### **Gaussian quick review**

- Gaussian distributions have particular properties
- A.k.a. The 'Normal curve'

 $g(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\overline{x})^2}{2\sigma^2}}$ 

- Has a mean and variance
  - Typically with noise
    - Mean (average) = 0
    - Some variance  $\sigma^2$



#### **Low-pass filtering**

- If we assume that the high frequency noise we don't care about is *Gaussian*, the noise behaves in a statistically predictable way
  - Average (or 'mean') = 0
  - Therefore one logical method of low pass filtering is by averaging over multiple sample points:

$$\int_{-\infty}^{+\infty} e(t)dt = 0$$

#### Low-pass filtering II

So the effect is this

