CogSci 109: Lecture 4

Fri. Oct 5, 2006 Discretization and filtering

Announcements

- Office hours are posted, and have had some changes
- Homework due Monday, office hours today 3-5!
- For matrix algebra, the matrix cookbook linked online

Announcements II

- Homework generally I would like matlab code included (we can give you strategic suggestions then), but this is the first HW and so if there's a problem, type the matlab commands you used and a one sentence description of what they do
- About matlab through VPN

Topics today

- Announcements
- Little math review/elaboration
- Examples
 - shadows
 - transformations for experimentation
- Plotting examples for homework
- Concept of analog and digital signals, digitization
- Discretization concepts, sampling
 - Supersampling/subsampling
- Aliasing
 - Example : music!
- Filtering
 - Low pass
 - High pass
- Two simple easy effective filters
- Matlab functions

Recall some details about the Transpose operation

- Transpose
 - Interchange rows and columns
 - Denoted conventionally by a superscript 'T'

• i.e. A^T

More on transposes

• Important transpose rules

$$(ABC)^{T} = C^{T}B^{T}A^{T}$$
$$(A^{T})^{T} = A$$
$$(A + B)^{T} = A^{T} + B^{T}$$

• A square matrix is symmetric if

$$A^{T} = A$$

Little calc/precalc review

- Domain and Range
 - Consider domain to be the input, range to be the output
 - Important in terms of space
- About plotting functions in Matlab which have discontinuities

Continuous vs. Discrete quantities

- Information storage
 - Continuous signals
 have information at
 every point in time
 - Discrete signals have info only at specified intervals (fixed or variable)

Examples of continuous and discrete systems

- Continuous or discrete?
 - *—#* of people in this class •Discrete
 - *—#* of Time zones •Discrete
 - -Time •Continuous
 - -Answers on multiple choice tests •Discrete
 - -A Sound •Continuous
 - -Body temperature •Continuous

Analog vs. Digital quantities

- Information storage
 - Analog contains infinite information
 - Digital contains limited information, depending on the number of bits of information the digital value can store
 - 0 or 1 in each bit means each bit multiplies the possible combinations of numbers by 2
 - $2^{4} = 0-15$ (a 4-bit number, 16 different values)
 - $2^8 = 0.255$ (an 8-bit number, 256 different values)
 - 2^16 = 0-65535 (a 16-bit number, 65536 different values)

More on digital quantities

- Measuring an EEG boils down to recording a sequence of numbers into computer memory, stored in values of a specific size, such as 8 bit numbers.
 - i.e. signal is 0-5V, digitized with 8 bit *precision* would yield a *resolution* of 5V/256 = 0.020V, or 20mV (mV = 'milli-Volts')
 - Resolution defined as the smallest quantity which can be reliably measured
 - Digital Precision The number of bits of information contained in a digital quantity
- Also important for computations
 - Round off errors can accumulate
 - Example
 - -2.245+3.432+1.234=6.911
 - -2+3+1=6, and that's only 3 samples! Imagine 1000/sec (1kHz)!
 - More on this later

Discretization

- Measuring a continuous (analog) signal means capturing information at specified (fixed or variable) intervals
 - Sampling frequency the frequency at which data is recorded from a signal (Typically in Hz, ie 5kHz)
- When capturing data, or when manipulating data which has been discretized, there are several issues to consider
 - Aliasing (not the TV show:)
 - Sampling rates
 - Post-processing filtering data to remove unwanted information while retaining desired information

Sampling

- Stories
 - Running in the dark with periodic lights on the ground, with sharp turns
 - Ping pong (no sound, periodic view of the system)
- As a rule of thumb, you must sample AT LEAST twice as fast as the highest frequency you want to measure
 - **Nyquist frequency -** max freq that can be measured
 - Nyquist rate sampling frequency (which is 2x the nyquist frequency) required to sample at the nyquist frequency
 - 20 times as fast is better
 - Filter out higher frequency components

What do we see in this picture?

Aliasing - the corrupting of a signal by components of higher frequencies overlapping into the lower frequency

How do we solve this?

- Filter out the frequencies we don't want
 - Low pass filter
 - High pass filter