
CogSci 109: Lecture 25

Fri. Dec. 7, 2006
An introduction to AI, search,

heuristics, and review

Outline for today

 Announcements

 Last time

 AI intro

 Search defined

 Random search, heuristics, and A*

 Review

Announcements

 Homework 7/takehome part

 Final Wed 12/12/07, location CSB001, 3-5:50pm

 Review sessions
 Sunday 7pm

 Monday 8pm

 Tuesday 8pm

 All locations TBA

Last time

 Training issues in artificial neural networks

 Associative memory and hopfield networks

What is Artificial Intelligence (AI)?
 Human Intelligence has many definitions, but

 We can consider two important forms

 General intelligence (G)
 Specific intelligence factors

 No perfect agreement of the AI definition
 Still evolving as a field

 Broadly, one useful definition is the field which
attempts to use artificial devices (usually computers)
to solve problems generally solved by humans
 Some problems aren’t yet solved by computers OR

people however, so keep this in mind

 Another model!!!

What are some AI problems?

 Much early work done in game playing and theorem
proving
 Why? Well-defined rules and algorithms, approaches that

can be clearly laid out and executed

 People that play games well and prove theorems are
generally considered to be displaying intelligence

 Chess/checkers players

 Geometry

 Commonsense reasoning
 Navigating to class

Task domains in AI (a few)
 Basic tasks

 Perception

 Vision, Speech
 Natural language

 Understanding, Generation, Translation
 Commonsense reasoning

 Robot control

 Formal tasks
 Games

 Chess, backgammon, checkers, go
 Mathematics

 Geometry, logic, integral calculus, proving properties of programs

 Expert tasks
 Engineering

 Design, fault finding, manufacturing planning
 Scientific analysis

 Medical diagnosis

 Financial analysis

Rich and Knight, Artificial Intelligence

Questions to consider

 What are our basic assumptions about
intelligence?

 What techniques can we use to solve AI
problems?

 In what level of detail are we modeling (human or
animal) intelligence?

 How do we know if we succeed making
something intelligent?

The assumption
 Physical symbol system [Newell & Simon 1976]

 A set of physical patterns related in some physical
way which may be part of other patterns referred to
as symbol structures

 System also contains processes which operate on the
structures

 Creation, modification, reproduction, destruction
 A machine producing with time an evolving set of

symbol structures, existing in a world broader than
the mere set of symbols

 Physical symbol system hypothesis - “a physical
symbol system has the necessary and sufficient means
for general intelligent action[Rich & Knight 1991].”

What is an AI technique?
 AI is a tremendously broad field of study
 AI techniques usually manipulate symbols as defined

previously
 A general statement from all the past research is that

intelligence requires knowledge

 Voluminous, hard to characterize, changing, organized how it
will be used

 AI technique is one that exploits knowledge to solve a
problem, where the knowledge is represented such
that

 Captures generalizations (differs from data)
 Understandable by people providing it
 Modifiable to correct errors and adapt to changing world
 Not context-dependent
 May be accessed in a strategic way (because so much of it)

Model detail/level
 Are we working to produce a system that performs

tasks the WAY people perform them?
 Are we working to produce a system that solves the

same problem a person might in the easiest way
possible?

 Both have been addressed by AI methods
 As cognitive scientists you will be surprised at the

optimality of the human being from the context of,
mechanical, dynamical, intellectual, computational,
and other perspectives

 Some things are more easily done with computers in a
different way than a person might do them

 Nonsense syllables - storage and coupling to a stimulus
syllable

Why would we model human
performance?
 Testing cognitive theories of human mind

 PARRY [Colby, 1975] exploited a model of human paranoid
behavior

 Let computers understand human reasoning
 Reading comprehension

 Let people understand computer reasoning

 Use people as models for solving problems, implement
those solution methods in a way that benefits humankind
(and generally the world/environment/etc of course)

Considering the last point and
where we’ve just been…

 Artificial Neural Networks have been very popular
models to test theories of human problem solving
because of their structural parallel to the human
brain’s functionality
 Thus the model we developed of ANN can be used for

AI models

 Recently massively parallel computational systems are
allowing more experimentation with high performance
AI (with ANN implementation) models
 Think about your new computers - laptops have

multiple processor cores now

 nVidia’s new 128 processor graphics card

Evaluating model success - a criterion

 Turing test [Turing 1950] - method for determining
whether a machine can think
 Needs 2 people and the machine

 Interrogator in separate room

 Machine and other person communicate with them by typing
questions and receiving typed responses

 The goal of the machine is to convince the interrogator it is a
person

 Success is interpreted as suggesting the machine
can think

 As of 2007 no machine has passed a formal Turing
test, though MANY machines have fooled people into
thinking they were persons
 ALICE example and chatbots

 In chats, no active attempt to disprove chatter as a
person

Other criteria
 Speed to perform a task

 Manufacturing (‘build to order’ computers) often use
AI-based robotics to assemble products

 Can often do what a skilled person might take hours
to complete in a few minutes

 Generally this is difficult to construct as single
unifying statement
 Instead considering a particular instance with

performance criteria which are more specific is the
general approach

 Humans again show their impressive adaptability by
ability to solve such broad problems that defining all
the problems concisely in one statement is very very
difficult!!!

So now what do we do to
approach AI problems?
 Figure out a strategic way to encode massive

amounts of knowledge

 Figure out a strategic way to access that
knowledge quickly and efficiently

A general approach to solving
problems
 Define the problem carefully

 Specify all assumptions

 Specify all given relevant information

 Analyze the problem

 Isolate the knowledge needed to find solution

 Choose best method of solution (technique) and
use it!

An important AI area - search

 Searches are a common part of life for most
organisms

 Let’s introduce search with a game

Tower of Hanoi game

 Start with the configuration to left, finish with
configuration on right

 Only top ring can be moved at a time, can only be
put on a larger ring or empty peg

Problem space

 States - the situations we encounter while
attempting to solve the problem

 Problem Space - the set of all states for a
problem
 Here it is the set of all possible configurations of

the rings on the pegs

Types of states
 Initial states - States where a given episode of problem solving

starts
 With Hanoi problem one initial state

 Other problems may have more

 Goal or solution states - States that are considered solutions to
the problem
 Again one solution state with Hanoi problem

 Other problems may have more

 Failure or impossible states - In some domains, there are states
with the property that if they are ever encountered, the problem
solving is considered a failure
 With Hanoi problem, any state in which the rule that rings

can only be placed on bigger rings is violated

 However often cast as constraints of the operators

 States can be explicitly (every possible state defined)
or abstractly specified

Operators

 We have to be able to manipulate states to
make the problem useful

 Operator - can be applied to states in the
problem domain, often an operator only acts
on a subset of states

From this state, 3 possible operators can be applied
Red ring can be moved to right hand peg
Blue ring can be moved to left hand peg
Blue ring can be moved to right hand peg

More on operators

 In this problem state
 The red ring cannot be moved to the middle peg

because the blue ring is already there, and it is

smaller.

 The green ring can't be moved at all from this state.

 When an operator is applied to a state, a new
configuration of the problem domain, (a new state)
is formed

What is a solution?

 Solution to the problem domain - A sequence
of operators that can be performed from a given
initial state, that doesn't pass through any failure
states, and that leads to a goal state

Search for a solution

 We can apply several techniques

 The naïve approach
 Generate and test

 Random search

 Search spaces
 Breadth- and depth- first searches

Generate and Test

1. generate a potential solution

2. see if it is in fact a solution
 (a) if so stop

 (b) if not, return to 1.

Issues with Generate and
Test searches

 Problems with G.A.T. if
 If there are many possible solutions

 If generating them is expensive, time consuming or
dangerous

 G.A.T. is useful if
 set of potential solutions isn't too big,

 if it possible to try them quickly

 if the more controlled approaches described in the
next few slides can’t be used

 Refinement
 Only try each solution once

 easy if all of the possible solutions can be enumerated
- you just try them in order

Refinements of G.A.T.

 generate solutions randomly, but to keep a list or an
array of all of the solutions you have tried

 before a new one is tried, to see if you have already
tried that one

 But problem with this approach
 if it takes you a long time to solve the problem, your

list of attempted solutions will grow, and you will
spend most of your time checking whether you have
tried a given solution before

 If the set of possible solutions is really huge - or if it is
infinite

 it is best to just generate solutions randomly and not check
 chance of trying something twice is very small, and the

overhead of checking is very high

Random search - using problem
space to find a solution
 Assume that the program can store a

representation of the set of states that it has
encountered while trying to solve a problem

 The algorithm:
1. Start with the initial state.
Loop:
 2.a Choose an operator at random.
 2.b If the operator can't be applied,
 or yields a failure state,
 continue with the previous state at step 2.a.
 2.c If the result is a goal state, stop.
 2.d Otherwise, continue with the new state at step 2.a.

Issues with random search

 It might get into an infinite loop generating the same
states over and over again.
 Similar issues with generate and test, but worse - can

get stuck in a loop where it keeps going back to the
same state, then operating to go forward, and back
again because the same operator is used

 It might never generate the actual solution
 Some techniques are guaranteed to find a solution (if

it exists), this one is not, nor is generate and test

 It might take an arbitrarily long time to find a solution
 No guarantee as to how long it will take to find a

solution, some techniques can guarantee finding
solution in a finite time which is specified

Solutions to problems with
random search
 Avoiding the first problem

 We need a systematic way to explore the state

space

 Avoiding the second/third problems
 Find a method of determining which state most

likely will ultimately lead to a solution state

First an introduction to search
space
 Search space = problem space when a search

algorithm is applied to the problem

Search space gets big fast!
 For 2 operators per state…2^n states per level, (2^(n+1)) - 1 total

states

Dealing with big search spaces

 Many techniques of AI attempt to deal with
explosively sized search spaces

 Note also that the above operator equation is only
unique states, it doesn’t include possible
repetitions!

n 2^n 2^(n+1)-1

2 4 7
4 16 31
6 64 128
10 1024 2047
15 32768 65536
20 1048576 2097151
30 1073741824 2147483647

Finding the goal state

 start with the initial state A, and try to find the
goal by applying operators to that state, and then
to the states B and/or C that result, and so forth

 often one is also interested in
 finding the goal state as fast as possible

 finding a solution that requires the minimum
number of steps

 finding a solution that satisfies some other
requirements

Breadth and depth first
searches
 Consider the following space

 G is the goal

 no operators apply to the states I, J, E, F and H

 Of course we only start with A, not knowing the rest

Breadth-first search

 all of the states at one level of the tree are considered before any of the states at
the next lower level

 order in which the states at a given level are considered is not necessarily that
shown in the diagram

Depth-first search
 After operators are applied to a state, one of the the resultant states is

considered next

 If a node is a failure node or there are no operators that apply to it, the next
node to be considered might be in the level above that of the current node

 We assumed that when a state is considered, all of the applicable operators
are applied to the state. This isn't always necessary

Some useful properties of
Breadth- and Depth- First
Searches to know

 Simplicity is practical!

 Breadth-first search can be proved to possess the following
properties

1. If a solution exists in the search space, Breadth-first search
will (eventually) find it

2. Breadth-first search will find the shortest possible solution,
measured in terms of number of operator applications

More properties

 Breadth-first search may take a while computationally, though it will find
the path to the shortest answer by checking all the other possible paths
 If a solution is at level N, Breadth-first search will consider all the states

down through level N before any further level, so if minimal solution at N,
it will find it

 But if N (minimal solution) is big, with 2 operators per state, Breadth-first
search considers 2^N different states before solving the problem, whereas
depth-first dives straight there (hopefully)

 Depth-first search does not necessarily satisfy either of the above two
properties
 In cases of infinite search space, might go down one branch and not come

back even if the solution is the 2nd level next over!

 When space is smaller, depth-first is generally faster

 Also good when most of space is failure states

Implementing searches

 You will read about a general search in more
depth

 algorithm can be tailored to various types of
searches including what we just mentioned (due
to time)
 It’s only a few pages on the website

 Sample code will be available

A quick intro to a general search
algorithm

 1.1 Make a "bag" containing the initial state.

 2.1 If the bag of states is empty, the search fails.

 2.2 Otherwise, remove a state from the bag.

 2.3 If that state achieves the goal, the search succeeds.

 2.4 Loop through the set of operators:

 3.3 If the operator applies to the state, apply the operator
and add the resulting state to the bag.

 2.5 Continue at step 2.1.

There are many other,
optimized forms of search
 Read about these as part of your final assignment

 Heuristic search

 Best-first search

 Hill climbing

 Minimizing cost

 A* search

 Beam search

 Two-way search

 Island search

Relation to optimization

 We’ve already learned about search methods
 Discussion of bracketing and golden ratio/section

 Gradient descent

 Minimization in general

 Local vs. global solutions

 Now you have a sense of how these methods are
important for AI concepts, and how to extend
them into studies of cognition, behavior, and the
human condition

The evolution of our concepts of modeling
and data analysis in this course

 We’ve developed an approach to modeling and analyzing
physical systems which can be applied to cognitive modeling
from many perspectives
 Capturing, processing and analyzing data

 Data processing, filtering, manipulation
 Computational tools, from pen and paper to matlab

 Visualization of that data

 Modeling behavioral data

 Formulating the problem
 Statistical
 Computational
 Evaluation criterion formulation (how well did the model

perform?)
 Communication of results

 Reading others’ results and insights
 Creating reports, collecting results and presenting them clearly

Where to go from here

 You now have basic tools you can apply to a
variety of problems

 Depending on the direction you intend to go, the
most important thing to do is to apply any
techniques you really want to learn well
 Practice

 Many topics have been introduced
 Choose references given and read

 Please stay in touch

 Recommendations

 Research projects

Thank you and good luck in
your future!

