
CogSci 109: Lecture 24

Wed Dec 4, 2007
Multilayer artificial neural networks,

self-organizing maps, and examples, and
applications (III)

Outline for today

 Announcements
 Homework announcement

 Practice final up later
 Review session day?
 Grades online updated

 Hw2 issues should have been resolved

Outline for today II
 About the final

 Takehome portion like a homework, worth 200 points

 Due Saturday at 12 midnight at the end of finals week
 In class portion multiple choice, like the midterm mult choice,

but more questions

 Practice final posted later this week, probably Wed

 With solutions
 Cumulative, but will focus on material since midterm

 Bring 3 double sided pages of notes, handwritten

 Bring calculator

 Bring red scantron

 Bring plenty of pencils and erasers

Outline for today (III)

 Review of last time
 Potential issues with training networks

 Overfitting and generalization

 nnd11gn
 Methods of dealing with these issues

 Unsupervised learning and associative memory
 Hopfield network

 Binary network learning rule

 Extension to continuous forms

 Stability of memories

 Brain damage

 failure

Potential issues to deal with
when training neural networks

 Overfitting - the state in which a model that has
too many parameters (degrees of freedom) adapts
too well to training data, fitting noise

 The system then does not respond properly to new input data of the
same class

 Generalization - ability of a learning system to
correctly map new inputs that were not previously
used in the training phase

 We want to reduce overfitting and increase generalization
of our fits

Techniques to Prevent
Overfitting
 Regularization

 Reduction of hidden units

 Only fit simpler functions
 Weight decay

 Early stopping
 Using validation sets

 Bayesian regularization
 (see the MacKay Book)

Technique 1: Reduce number of
layers to prevent overfitting
 Note: Remember that overfitting is a problem when fitting many

parameters to small amounts of data
 Infinite data would be then no problem

 Simplify the function you are fitting by reducing the number of
network hidden layers - similar to using a lower degree polynomial
to fit data
 Limits the capability of your network

 But ahead of time we may not know the complexity of the function
we want to fit, so how do we deal with this?

Technique 2: Regularization to
prevent overfitting
 Regularization - adding a penalty to the usual error function to encourage

smoothness

 Here is the regularization parameter and is the smoothness penalty

 Weight decay sets
 Note that when you then take the partial derivative of with

respect to a weight the update rule will now include a term that
is -w_i.

 This will encourage the weights to decay to zero (hence the
name)

€

Enew = E +ν *ω

€

ω =
1
2

wi
2

i
∑

€

ν

€

ω

€

Enew

Technique 3: Early stopping to
prevent overfitting
 Start the weights very small

 Then the neural network starts by behaving fairly linearly

 The weights gradually increase to handle nonlinearities

 Split the data into a validation set and a training set
 Use the training set to adjust the weights

 Use the validation set to compute model error

 As the fit improves the error will decrease, when the error starts
to increase again, you are fitting the noise in the training set

M
od

el
 E

rr
or

Training Epochs

Testing

Training

Technique 4: Bayesian
regularization to prevent
overfitting
 The Bayesian neural network formalism of David MacKay and

Radford Neal, considers neural networks not as single networks but
as distributions over weights (and biases)

 The output of a trained network is thus not the result of applying one
set of weights but an average over the outputs from the distribution.

 This can be computationally expensive but MacKay and Neal have
developed approximations and the approach leads to automatic
regularization that is very effective.

More training issues

 Improvements on gradient descent
 Gradient descent with momentum

 Conjugate gradient

 Variable learning rate

 For nonquadratic functions, minimization (ie Nelder Mead, golden
section line search, Brent’s method, etc - See numerical methods
book)

 Demos:
 nnd12sd1

 nnd12sd2

 nnd12mo

 nnd12vl

 nnd12ls

 nnd12cg

Unsupervised learning for associative memory

 Hebbian learning (Hebb 1949)
 The weights of neurons whos activities are positively

correlated are increased:

 So when stimulus m is present, the activity of neuron m
increases

 Neuron n is associated with another stimulus n
 If these two stimuli co-occur in the environment, the

Hebbian learning rule will increase the weights wnm and
wmn
 Now when stimulus n appears later alone, the positive

weight from n->m will cause neuron m to be also
activated

A Network example - Associative Memory
 Associative memory sample

 (Yellow)--(banana smell)

 What is a binary Hopfield network?
 Weights are constrained to be

 Symmetric
 Bidirectional
 No self connections (w_ii = 0)

 Activity rule

 We need to specify the order of updates as either
 Synchronous

 Asynchronous - each neuron sequentially (either fixed or random
order) computes its activation then updates its output state and
weights

€

wkp = wpk

€

x(a) =Θ(a) ≡
1 a ≥ 0
−1 a < 0

€

ak = wkj x j
j
∑

xk =Θ(ak)

Binary Network learning rule

 Learning rule
 The problem - make a set of memories stable states

of the network’s activity rule

 Each memory is a binary pattern

 Setting the weights is done according to Hebb’s rule:

 We may set eta to prevent a particular weight from growing with N:

Associative memory example

 Pattern completion

 Error correction

Desired memories:

Continuous form of the Hopfield
network
 Similar rules, but instead of binary states, we have

continuous states from (-1,1)

 Eta becomes more important

Plot of y=Tanh(x)

Stability of memories

 Lyapunov functions
 If you can show that a lypapunov function exists for

an ANN, then it’s dynamics converge rather than

diverge

 Look up lyapunov functions for more info, there is
not time to cover them here

Brain damage (p. 511 in MacKay) - delete 26 weights, still converges

Failures of ANN’s

 Stability of memories is an issue to be considered

 For failure mode analysis (where hopfield
networks fail to correctly restore memories), see
MacKay Chapter 42

