
CogSci 109: Lecture 23

Mon Dec 2, 2007
Multilayer artificial neural networks,

examples, and applications (II)

Outline for today
 Announcements

 Homework announcement

 Instead of a threshold, we can consider other
activation functions
 Threshold, sigmoid, linear, etc

 Fitting arbitrary functions

 Multilayer neural networks
 Some of the typical network topologies

Outline for today (II)

 Methods of training networks
 What is Supervised learning

 What is Unsupervised learning

 What is Reinforcement learning

 Matlab neural network toolbox demos
 Potential issues with training networks

 Overfitting and generalization

 Methods of dealing with these issues

Announcements
 Homework 6
 Grades online updated - please check again

 Blank midterm short answer sections

 Two people no names on tests!!!
 Student who may not be registered

 About grade changes/late midterms/homeworks 0’s

Announcements (II)

 About the final
 Takehome portion like a homework, worth 200 points

 Due Saturday at 12 midnight at the end of finals week
 In class portion multiple choice, like the midterm mult choice,

but more questions

 Practice final posted later this week, probably Wed

 With solutions
 Cumulative, but will focus on material since midterm

 Bring 3 double sided pages of notes, handwritten

 Bring calculator

 Bring red scantron

 Bring plenty of pencils and erasers

Other activation function
concepts
 Threshold
 Sigmoid
 Gaussian
 Hyperbolic tangent
 Sine
 Unit sum
 Square root
 Logistic
 Softmax
 Linear
 Many others

So you can have any shape
activation function
 Not just threshold

 Allows you to create real-valued outputs

Sigmoid

 Equation
 Mentioned last time

 Matlab - SIGMF()

 Vary parameters b and c to control the
steepness of the transition from 0-1

 Saturates to 0 as x->-inf, and 1 as x-
>+inf

 Networks of neurons with real-valued
inputs and sigmoid activation functions
can be used to approximate
mathematical functions
 Any continuous real-valued function

can be approximated to arbitrary
accuracy with a feedforward network of
at least one hidden layer

 Matlab demo -> nnd11fa

Some typical network topologies

Single layer
perceptron

Multi-layer
perceptron

Hopfield
network

Elman recurrent
network

Competitive
networks

Self-organizing
maps

So now we have these fancy
networks, how can we get them
to ‘learn?’

Methods of training networks

 Generally boils down to three learning strategies
 Supervised learning

 Unsupervised learning

 Reinforcement learning

 Many methods with variants, but basically all fall
under these above categories

Supervised learning

 Method of learning whereby an error value is generated
from the actual response of the network and the desired
response. Following that, the weights are then modified
such that the error is gradually reduced

 Training set - A set of known input/output pairs is
presented to the network in order to appropriately adjust
the weights to produce the desired output given a certain
input

 We already saw one example in the perceptron learning
algorithm

 We will discuss backpropagation today

Unsupervised learning

 There is still an input/output relationship but no
feedback is provided indicating whether
network’s associations are correct or not

 The network must discover by itself similarities in
the patterns of the data
 Self-organizing networks - networks that possess

the ability to to infer patterns from input-only data

Reinforcement learning

 Input/output data and a teaching signal
 The teaching signal is not a measure of the error,

rather an indication of the result as ‘right’ or ‘wrong’

direction

Neural Network Demos in
matlab
 In matlab (you need the Neural Network Toolbox)

 nnd2n1 One-input neuron demonstration.

 nnd2n2 Two-input neuron demonstration.

 nnd4db Decision boundaries demonstration.

 nnd4pr Perceptron rule demonstration.

 nnd9sdq Steepest descent for quadratic function
demonstration.

 nnd11nf Network function demonstration.

 nnd11bc Backpropagation calculation demonstration

 nnd11fa Function approximation demonstration.

 nnd11gn Generalization demonstration.

Back propagation algorithms

 General algorithm
 Present inputs

 Propagate network responses forward

 Compute the error between output and desired
output

 Back-propagate deltas

 Update weights

 Repeat for next pattern

 Matlab demo - nnd11bc

Specifically
1. Initialize weights randomly
2. Present an input vector pattern to the network
3. Evaluate the outputs of the network by propagating

signals forwards
4. For all output neurons, calculate

1. d_j is desired output of neuron j and y_j is current output

5. For all other neurons compute delta

1. Where delta_k is the delta_j of succeeding layer, and

6. Update weights according to

7. Goto 2 until iterationmax or minimal error

NN matlab demos and
commands
 Simple function fit

 Classification

Potential issues to deal with
when training neural networks

 Over-fitting

 Generalization

 We want to reduce over-fitting and increase

generalization of our fits

Techniques to Prevent
Overfitting
 Regularization

 Reduction of hidden units

 Only fit simpler functions
 Weight decay

 Early stopping
 Using validation sets

 Bayesian regularization
 (see the MacKay Book)

Technique 1: Reduce number of
layers to prevent overfitting
 Note: Remember that overfitting is a problem when fitting

many parameters to small amounts of data
 Infinite data would be then no problem

 Simplify the function you are fitting by reducing the
number of network hidden layers - similar to using a
lower degree polynomial to fit data
 Limits the capability of your network

 But ahead of time we may not know the complexity of the
function we want to fit, so how do we deal with this?

Technique 2: Regularization to
prevent overfitting
 Regularization - adding a penalty to the usual error function to encourage

smoothness

 Here is the regularization parameter and is the smoothness penalty

 Weight decay sets
 Note that when you then take the partial derivative of

 with respect to a weight the update rule will now
include a term that is -w_i.

 This will encourage the weights to decay to zero (hence
the name)

€

Enew = E +ν *ω

€

ω =
1
2

wi
2

i
∑

€

ν

€

ω

€

Enew

Technique 3: Early stopping to
prevent overfitting
 Start the weights very small

 Then the neural network starts by behaving fairly linearly

 The weights gradually increase to handle nonlinearities

 Split the data into a validation set and a training set
 Use the training set to adjust the weights

 Use the validation set to compute model error

 As the fit improves the error will decrease, when the error starts
to increase again, you are fitting the noise in the training set

M
od

el
 E

rr
or

Training Epochs

Technique 4: Bayesian
regularization to prevent
overfitting
 The Bayesian neural network formalism of David MacKay and

Radford Neal, considers neural networks not as single networks but
as distributions over weights (and biases)

 The output of a trained network is thus not the result of applying one
set of weights but an average over the outputs from the distribution.

 This can be computationally expensive but MacKay and Neal have
developed approximations and the approach leads to automatic
regularization that is very effective.

More training issues

 Improvements on gradient descent
 Gradient descent with momentum

 *Conjugate gradient*

 Variable learning rate

 For nonquadratic functions, minimization (ie Nelder Mead,
golden section line search, Brent’s method, etc - See
numerical methods book)

 Demos:
 nnd12sd1

 nnd12sd2

 nnd12mo

 nnd12vl

 nnd12ls

 nnd12cg

