
CogSci 109: Lecture 23

Mon Dec 2, 2007
Multilayer artificial neural networks,

examples, and applications (II)



Outline for today
 Announcements

 Homework announcement

 Instead of a threshold, we can consider other
activation functions
 Threshold, sigmoid, linear, etc

 Fitting arbitrary functions

 Multilayer neural networks
 Some of the typical network topologies



Outline for today (II)

 Methods of training networks
 What is Supervised learning

 What is Unsupervised learning

 What is Reinforcement learning

 Matlab neural network toolbox demos
 Potential issues with training networks

 Overfitting and generalization

 Methods of dealing with these issues



Announcements
 Homework 6
 Grades online updated - please check again

 Blank midterm short answer sections

 Two people no names on tests!!!
 Student who may not be registered

 About grade changes/late midterms/homeworks 0’s



Announcements (II)

 About the final
 Takehome portion like a homework, worth 200 points

 Due Saturday at 12 midnight at the end of finals week
 In class portion multiple choice, like the midterm mult choice,

but more questions

 Practice final posted later this week, probably Wed

 With solutions
 Cumulative, but will focus on material since midterm

 Bring 3 double sided pages of notes, handwritten

 Bring calculator

 Bring red scantron

 Bring plenty of pencils and erasers



Other activation function
concepts
 Threshold
 Sigmoid
 Gaussian
 Hyperbolic tangent
 Sine
 Unit sum
 Square root
 Logistic
 Softmax
 Linear
 Many others



So you can have any shape
activation function
 Not just threshold

 Allows you to create real-valued outputs



Sigmoid

 Equation
 Mentioned last time

 Matlab - SIGMF()

 Vary parameters b and c to control the
steepness of the transition from 0-1

 Saturates to 0 as x->-inf, and 1 as x-
>+inf

 Networks of neurons with real-valued
inputs and sigmoid activation functions
can be used to approximate
mathematical functions
 Any continuous real-valued function

can be approximated to arbitrary
accuracy with a feedforward network of
at least one hidden layer

 Matlab demo -> nnd11fa



Some typical network topologies

Single layer
perceptron

Multi-layer
perceptron

Hopfield
network

Elman recurrent
network

Competitive
networks

Self-organizing
maps



So now we have these fancy
networks, how can we get them
to ‘learn?’



Methods of training networks

 Generally boils down to three learning strategies
 Supervised learning

 Unsupervised learning

 Reinforcement learning

 Many methods with variants, but basically all fall
under these above categories



Supervised learning

 Method of learning whereby an error value is generated
from the actual response of the network and the desired
response.  Following that, the weights are then modified
such that the error is gradually reduced

 Training set - A set of known input/output pairs is
presented to the network in order to appropriately adjust
the weights to produce the desired output given a certain
input

 We already saw one example in the perceptron learning
algorithm

 We will discuss backpropagation today



Unsupervised learning

 There is still an input/output relationship but no
feedback is provided indicating whether
network’s associations are correct or not

 The network must discover by itself similarities in
the patterns of the data
 Self-organizing networks - networks that possess

the ability to to infer patterns from input-only data



Reinforcement learning

 Input/output data and a teaching signal
 The teaching signal is not a measure of the error,

rather an indication of the result as ‘right’ or ‘wrong’

direction



Neural Network Demos in
matlab
 In matlab  (you need the Neural Network Toolbox)

 nnd2n1  One-input neuron demonstration.

 nnd2n2  Two-input neuron demonstration.

 nnd4db  Decision boundaries demonstration.

 nnd4pr  Perceptron rule demonstration.

 nnd9sdq   Steepest descent for quadratic function
demonstration.

 nnd11nf Network function demonstration.

 nnd11bc Backpropagation calculation demonstration

 nnd11fa Function approximation demonstration.

 nnd11gn Generalization demonstration.



Back propagation algorithms

 General algorithm
 Present inputs

 Propagate network responses forward

 Compute the error between output and desired
output

 Back-propagate deltas

 Update weights

 Repeat for next pattern

 Matlab demo - nnd11bc



Specifically
1. Initialize weights randomly
2. Present an input vector pattern to the network
3. Evaluate the outputs of the network by propagating

signals forwards
4. For  all output neurons, calculate

1. d_j is desired output  of neuron j and y_j is current output

5. For all other neurons compute delta

1. Where delta_k is the delta_j of succeeding layer, and

6. Update weights according to

7. Goto 2 until iterationmax or minimal error



NN matlab demos and
commands
 Simple function fit

 Classification



Potential issues to deal with
when training neural networks

 Over-fitting

 Generalization

 We want to reduce over-fitting and increase

generalization of our fits



Techniques to Prevent
Overfitting
 Regularization

 Reduction of hidden units

 Only fit simpler functions
  Weight decay

 Early stopping
 Using validation sets

 Bayesian regularization
 (see the MacKay Book)



Technique 1: Reduce number of
layers to prevent overfitting
 Note: Remember that overfitting is a problem when fitting

many parameters to small amounts of data
 Infinite data would be then no problem

 Simplify the function you are fitting by reducing the
number of network hidden layers - similar to using a
lower degree polynomial to fit data
 Limits the capability of your network

 But ahead of time we may not know the complexity of the
function we want to fit, so how do we deal with this?



Technique 2: Regularization to
prevent overfitting
 Regularization -  adding a penalty to the usual error function to encourage

smoothness

 Here    is the regularization parameter and       is the smoothness penalty

 Weight decay sets
 Note that when you then take the partial derivative of

   with respect to a weight the update rule will now
include a term that is -w_i.

 This will encourage the weights to decay to zero (hence
the name)

€ 

Enew = E +ν *ω

€ 

ω =
1
2

wi
2

i
∑

€ 

ν

€ 

ω

€ 

Enew



Technique 3: Early stopping to
prevent overfitting
 Start the weights very small

 Then the neural network starts by behaving fairly linearly

 The weights gradually increase to handle nonlinearities

 Split the data into a validation set and a training set
 Use the training set to adjust the weights

 Use the validation set to compute model error

 As the fit improves the error will decrease, when the error starts
to increase again, you are fitting the noise in the training set
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Technique 4: Bayesian
regularization to prevent
overfitting
 The Bayesian neural network formalism of David MacKay and

Radford Neal, considers neural networks not as single networks but
as distributions over weights (and biases)

 The output of a trained network is thus not the result of applying one
set of weights but an average over the outputs from the distribution.

 This can be computationally expensive but MacKay and Neal have
developed approximations and the approach leads to automatic
regularization that is very effective.



More training issues

 Improvements on gradient descent
 Gradient descent with momentum

 *Conjugate gradient*

 Variable learning rate

 For nonquadratic functions, minimization (ie Nelder Mead,
golden section line search, Brent’s method, etc - See
numerical methods book)

 Demos:
 nnd12sd1

 nnd12sd2

 nnd12mo

 nnd12vl

 nnd12ls

 nnd12cg


