CogSci 109: Lecture 22

Fri Nov 30, 2007 Multilayer artificial neural networks, examples, and applications

Outline for today

- Announcements
- Homework announcement
- PLU demo code

\Box (not using the neural network toolbox in matlab)

- Completing the PLU details XOR, NOT
- How do we resolve this issue?

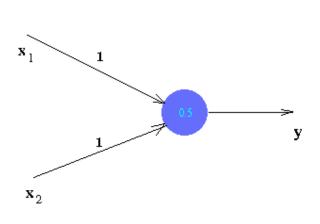
Historical notes

- Feedforward/feedback structures
 - Important note for network topologies
 - Big dog
 - Inverted pendulum
- Multilayer neural networks
 - Some of the typical network topologies
- Matlab neural network toolbox demos

Announcements

Homework 6

- Homework 5 notes
 - How to download papers for free using your UCSD student access
 - Previous homework and midterm returns
 - Come discuss issues
- Grade program online
 - Blank midterm short answer sections
 - Student who may not be registered
 - □ About grade changes/late midterms/homeworks 0's


Generic PLA matlab code (not using neural network toolbox)

- Original TLU's did not have learning rule weights had to be designed
- 50's Rosenblatt's main contributions were the perceptron learning rule
- Demo/explanation
 - Binary classifier

Limitations of a single neuron

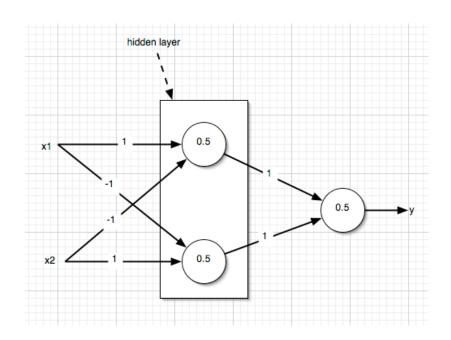
XOR problem -

- build a single layer, single unit perceptron which takes 2 boolean inputs and outputs the XOR of them. What we want is a perceptron which will output 1 if the two inputs are different and 0 otherwise.
- □ Consider the following perceptron as an attempt to solve the problem

Input	Input	Desired Output
0	0	0
0	1	1
1	0	1
1	1	0

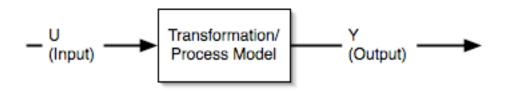
•If the inputs are both 0, then net input is 0 which is less than the threshold (0.5). So the output is 0 - desired output.

•If one of the inputs is 0 and the other is 1, then the net input is 1. This is above threshold, and so the output 1 is obtained.

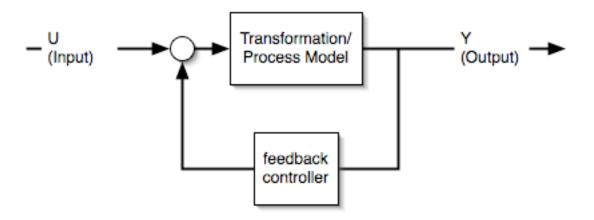

•But the given perceptron fails for the last case

Limitations of single layer perceptrons (II)

- Widely publicized in the book Perceptrons [MiPa69] by Marvin Minsky and Seymour Papert
- It was not until the 1980s that these limitations were overcome with im- proved (multilayer) perceptron networks and associated learning rules
 - The funding and thus literature for ANN's slowed to a crawl until then!


How do we resolve this?

- Feedforward multilayer networks
 - Simple implementation
 - Computational capability
 - Input-output data
 - No feedback (signals only travel forward)
- It can be shown that by connecting together multiple TLU's in a two layer network we can solve the XOR problem
 - Implements two linear decision boundaries



An important concept...

Feedforward system

Feedback system

Feedforward-feedback

example

- Position control of a motor angle or human limb joint angle
- Path planning
- Feedforward has advantages and drawbacks
 - Main drawback model is never perfect, and noise can cause severe drift over time, leading to inaccuracies
 - Any small error in the model tends to cause massive inaccuracies
 - Any disturbances cause errors noise or external inputs
 - Advantage simplicity in computation and sensor requirements
- Feedback has advantages of robustness and error correction

A common feedback example - inverted pendulum control

People standing or walking can be modeled as inverted pendulums

Another example - robotics application

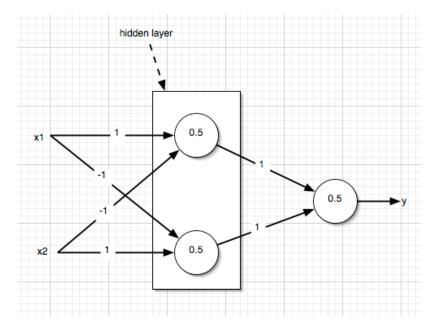
Big dog video

Littledog video

Back to neural networks...

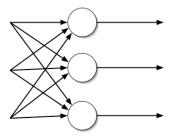
- Now that we have a concept of feedforward and feedback, and how single unit perceptrons work, let's move on to combinations of units to multi-layer networks
- More details next time but main applicatios of ANN's are

Function fitting

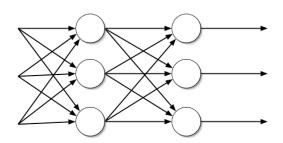

• Fit this data without an equation!!!

Classification

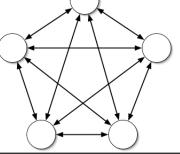
blue cat or red cat?

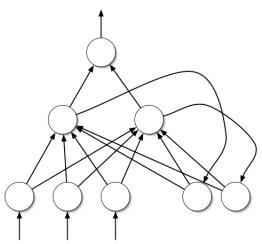

Multilayer networks

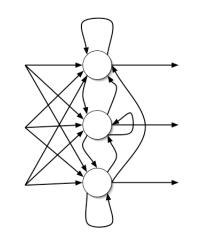
Hidden nodes/layers - intermediate node layers which are NOT directly connected to the outside world (input or output)



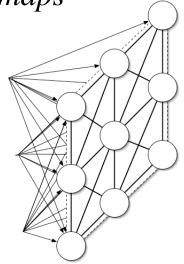
Some typical network topologies


Single layer perceptron


Multi-layer perceptron


Hopfield network

Elman recurrent network



Competitive networks

Self-organizing

maps

Other activation function concepts

- Threshold
- Sigmoid
- Logarithmic
- Linear
- Many others

Neural Network Demos in matlab

- In matlab (you need the Neural Network Toolbox)
 - nnd2n1 One-input neuron demonstration.
 - nnd2n2 Two-input neuron demonstration.
 - nnd4db Decision boundaries demonstration.
 - nnd4pr Perceptron rule demonstration.
 - nnd9sdq Steepest descent for quadratic function demonstration.
 - nnd11nf Network function demonstration.
 - nnd11bc Backpropagation calculation demonstration
 - nnd11fa Function approximation demonstration.
 - nnd11gn Generalization demonstration.

