
CogSci 109: Lecture 21

Wed, Nov. 28, 2007: Introduction
to artificial neural networks
(ANN’s), threshold logic units, and
perceptrons

Outline for today

 Announcements
 Review
 Definition and overview of artificial neural networks

 Motivation

 Review of neural structures and relation to ANN’s

 The power of many - the massively parallel nature of
neural network structures

 The double-edged sword of ANN’s
 Pitfalls

 Proper uses

 Introduction to threshold logic units (T. L. U.)
 Historical significance

 Logical

 Introduction to perceptron logic units (P.L.U.)

Announcements

 Readings

 Hw 6 up later tonight or tomorrow

 Nick will hold extra office hours in the lab Friday
to help
 Time announced on website

But is there another way?

 As cognitive scientists you might want to create a fit to
very nonlinear difficult data, and the methods we have
used may have difficulty
 Or model a system whose properties are not simple, or

are difficult to define

 You may want to model cognition and performance of
large groups of structure in the brain rather than just
behavior
 Gosh I wish there was a model for these sorts of

concepts…

There is! Artificial Neural Networks
(A.N.N.’s)
 A study of nature leads to a useful model

 Something about the organization of the structures of the
brain allows us to solve complex problems with ease,
adapt to new situations, and deal with large errors,
incomplete information and faults (brain injury)

 Artificial Neural Networks are an attempt to simulate
by mathematical means an idealized representation of the
basic elements of the brain and their

 Functionality
 Interconnections
 Signal processing
 Self-organization capabilities

Brief review of neuronal
structures and relation to ANNs

A simplified biological neuron Classic threshold logic unit

One neuron alone is not where
the true power lies
 Electrical impulses travel along the axons and are

transmitted to other neurons via synaptic connections

 If enough incoming pulses arrive in a particular neuron in
a given amount of time, the neuron fires, transmitting a
new electrical impulse down its axon

 This is a fairly slow process (relative to computer
architecture) for a single neuron, but…

Why is a neural structure so powerful?

 Massively parallel
 Parallel vs. serial demo

 Very fault tolerant
 When you for example are writing a program and miss a .^

or misspell a variable, that is a fault, brain is less
sensitive to that kind of thing since many neurons
contribute to the same computation

Why is a neural structure so powerful
(II)?

 Low power consumption
 Brain consumes orders of magnitude less energy than any

known digital technology for similar elementary
operations (logic, for example)

 10^11 neurons, and ~10^15 connections
 Plasticity of the brain - adaptation of connectivity

patterns which allows us to learn

 Compare 10^3-10^5 connections of each neuron to others
with ~10 for a digital logic circuit

 Highly interconnected nature

The double-edged sword of
A.N.N.’s
 A.N.N.’s solve problems in very different ways from

usual computer programming
 No series of precise instructions (program) for the

machine to execute

 ANN is more adaptive, self-organizing progressively to
approximate the solution

 Frees the problem solver from having to specify the steps to a
solution

 Also hides the steps to the solution, so you may not learn how a
problem is being solved by a person in an experiment for example,
you can just model it in a way that predicts the answer

 Example - two volunteers, sentence comprehension

Look not for the panacea of
modeling, look for what’s useful
for your purposes
 (Panacea - a solution or remedy for all difficulties

or diseases)
 So take-home message - as always with modeling,

use the ANN model with care, consider the
application and you are likely to gain many useful
insights using them
 Mouse example

A.N.N.’s are best at…

 ANN’s are best at problems where little or nothing is
known, so building a mathematical model is difficult, but
there happens to be a great deal of data is available
 A.N.N.’s are data-driven

 Some common applications of this type are
 pattern classification

 non-linear function approximation and system modeling

 Control

 associative memory

 system prediction

The basics of Artificial Neurons

 ANN’s are made of up many repetitions of the
same simple structure, artificial neurons

 1943, McCulloch and Pitts wrote a very
influential paper (which you will read) and
introduced:
 The Threshold Logic Unit (TLU) also known as a

Linear Threshold Gate

The threshold logic unit (TLU)

 Takes real-valued inputs (e.g. 0.243 as opposed to 1 or 0
only), xi, each input associated with a “weight” wi (or
“synaptic weight”), which represents the contact between
two nerve cells

 Performs a weighted sum of the x’s, and if the sum is
larger than a threshold (theta), the neuron outputs a 1,
otherwise a 0

 The neuron will ‘fire’ if the threshold is exceeded,
otherwise it does nothing

Artificial Neuron Firing…

 Neuron Activation is defined by the weighted
sum of

 And whether the neuron fires is determined by

€

y(x) =
1 if wixi ≥θ,

i=1

n

∑
0 otherwise

€

Activation = wixi
i=1

n

∑ = wT x

Perceptrons are more general
than TLU’s

 So how is this useful?
 Since it can output a 0

or 1, a perceptron
alone can perform
many logical
operations

 AND, OR, NOT

 Demos
 Combined with more

than one TLU, you can
have continuous
functions, since output
of one can be
weighted input to
another

How does it ‘learn?’

 The idea is that the perceptron is ‘trained’ by beginning
with a guess for the weights, giving it an input, it
generates an output (0 or 1), then that is compared with
the desired output, and the weights are updated according
to some rule
 i.e. - if it was wrong, change the weights so next time it

will be ‘less wrong’

 think about our discussions of error criteria

 After the training period, it should respond to certain
inputs with reasonable outputs

 Guess what is a popular algorithm for updating the
weights?
 Yep, gradient descent - usually modified to be conjugate

gradient to help with convergence

Perceptron learning rule

1. Initialize weights and threshold randomly
2. Present an input vector to the neuron
3. Evaluate the output of the neuron
4. Evaluate the error of the neuron and update the weights

according to :

1. Where d is the desired output, y is the actual output of
the neuron, and is a parameter called
the step size

5. Go to step 2 for a certain number of iterations or until
the error is less than a pre-specified value

€

wi
t+1 = wi

t +η(d − y)xi

€

η(0 <η <1)

 Computing "and":
 ‘And’ review
 There are n inputs, each either a 0 or 1. To compute the logical

"and" of these n inputs, the output should be 1 if and only if all
the inputs are 1. This can easily be achieved by setting the
threshold of the perceptron to n. The weights of all edges are 1.
The net input can be n only if all the inputs are active.

 Computing "or":
 ‘Or’ revieww
 It is also simple to see that if the threshold is set to 1, then the

output will be 1 if at least one input is active. The perceptron in
this case acts as the logical "or".

 Computing "not":
 ‘Not’ review
 The logical "not" is a little tricky, but can be done. In this case,

there is only one boolean input. Let the weight of the edge be -1,
so that the input which is either 0 or 1 becomes 0 or -1. Set the
threshold to 0. If the input is 0, the threshold is reached and the
output is 1. If the input is -1, the threshold is not reached and the
output is 0.

Limitations of a single neuron

 XOR problem -
 build a perceptron which takes 2 boolean inputs and outputs the XOR of them.

What we want is a perceptron which will output 1 if the two inputs are different
and 0 otherwise.

 Consider the following perceptron as an attempt to solve the problem

•If the inputs are both 0, then net input is 0 which is less than the threshold (0.5). So the output is 0 - desired
output.
•If one of the inputs is 0 and the other is 1, then the net input is 1. This is above threshold, and so the output 1 is
obtained.
•But the given perceptron fails for the last case

011

101

110

000

Desired
Output

InputInput

Never fear, we can make more!

 That’s why combining more than one makes
neural networks more general for solving
problems

 More details on that next time

