
CogSci 109: Lecture 20

Mon, Nov. 26, 2007: Review of
gradient descent, conjugate
gradient



Outline for today

 Announcements

 Review of gradient descent

 Introduction to conjugate gradient

 Introduction to PLU’s



Announcements

 Homework 5 due today

 Hw 6 will be assigned this week

 Demo code
 gradient descent

 Nonlinear function fits

 Readings



About the Nelder-Mead Simplex
algorithm
 Last time we showed examples of the NM

algorithm and implementation details in matlab



Before we go on, a few
definitions

 Positive definite matrix
 All eigenvalues are positive

 Symmetric matrix (review) - symmetric about
the diagonal



Last time we also introduced
the gradient descent method
 Intuitive algorithm - go ‘downhill’ for the parameters in

the objective function you want to minimize

 Useful for
 Solution of a large linear system of equations

 Solution of a nonlinear systems of equations

 Special note - some Artificial Neural Network Algorithms use
gradient descent on the weights (more on this later)

 Optimization and control of dynamic systems



How does the gradient descent
algorithm work?
 Consider first the objective of gradient descent

 You want to get to the bottom of the hill

 Start somewhere, then you ski down the hill

Start here, 

Then move 
towards the 
minimum

*

*



How do we do this
mathematically?
 We want to minimize (A is assumed symmetric positive

definite)

 We do this by starting with some initial guess for our
parameters, and then ‘skiing’ downhill along the direction
r with some ‘speed’ alpha at each iteration k

 So we’ll proceed iteratively toward the minimum of J(x)
 We want to move down the opposite of the gradient of J



Computing the gradient of J(x)

 r at iteration k is given by taking the gradient of
J(x) with respect to x

 With the gradient of J computed by

Note that
Since A is symmetric 
positive semi-definite

So now we have the direction to move at iteration k…



Computing alpha

 We have to determine the step size (distance to go)
at the iteration k

 We will compute the alpha at iteration k that
minimizes



After a little work, we find
alpha…

We can divide here because
these are all scalars (one
number)

The minimum 
occurs at 0



So finally we have each part…

 Given an initial condition, we can iteratively head
towards the minimum of a function J
 We compute the direction r and step size alpha at

each k

 If we have a small enough error between Ax-b, we

stop

 Or we stop if we’ve iterated too many times, as a

convergence check



But…

 There are issues with this
method when the objective
function is more challenging -
with very steep sides and long
flat valleys (poorly conditioned)

 This method also is a bit
inefficient since it must ‘tack’
back and forth at 90 degree
increments
 Due to successive line

minimization and lack of
momentum from one iteration
to the next

 THERE HAS TO BE A BETTER
WAY!!!



THERE IS - Conjugate Gradient
Descent
 When you ski, you don’t instantaneously tack

back and forth, you have some momentum from
the previous moment leading you to the next

 With a slight modification to the previous method
we can arrive at a method that doesn’t get
hindered by long narrow valleys



How CG improves over steepest
descent
 Instead of minimizing over a single alpha, which does one

direction at a time for that iteration, we minimize our
function in every direction simultaneously while only
searching in one direction at a time
 In other words, to converge in exactly m iterations to the

answer, we should minimize over all the steps we’ll take
at once

  (ie we can think of this as minimizing in m directions
simultaneously)

 We can do this in any number of search directions
 Prevents that ‘tacking’ phenomena exhibited by the

gradient descent method



How it’s done…

 We can reduce this problem to minimizing each
direction individually provided the different
directions are independent of each other, or
conjugate in the following sense

 We can choose our p’s so they are conjugate in
the following way



Solving in m iterations

 Consider that we start with our initial guess x_0,
then move to our solution, x_m

 Substitute that into J, then compute the partial
derivative with respect to each alpha, set that
equal to zero



What does it boil down to?

 We compute a sequence of p’s which are
conjugate
 We redefine the descent direction at each iteration

after the first to be a linear combination of the

direction of steepest descent r and the previous
descent direction



The result

Steepest descent Conjugate
gradient


