## CogSci 109: Lecture 20

Mon, Nov. 26, 2007: Review of gradient descent, conjugate gradient

## Outline for today

- Announcements
- Review of gradient descent
- Introduction to conjugate gradient
- Introduction to PLU's


## Announcements

- Homework 5 due today
- Hw 6 will be assigned this week
- Demo code
$\square$ gradient descent
$\square$ Nonlinear function fits
- Readings


## About the Nelder-Mead Simplex algorithm

- Last time we showed examples of the NM algorithm and implementation details in matlab



## Before we go on, a few definitions

- Positive definite matrix
$\square$ All eigenvalues are positive

$$
\left(M_{i j}=M_{j i}\right)
$$

■ Symmetric matrix (review) - symmetric about

$$
\left[\begin{array}{cccc}
10 & 2 & 3 & 4 \\
2 & 4 & 9 & 7 \\
3 & 9 & 2 & 8 \\
4 & 7 & 8 & 1
\end{array}\right]^{1} \square\left[\begin{array}{cccc}
10 & 2 & 3 & 4 \\
2 & 4 & 9 & 7 \\
3 & 9 & 2 & 8 \\
4 & 7 & 8 & 1
\end{array}\right]
$$



## Last time we also introduced the gradient descent method

■ Intuitive algorithm - go 'downhill' for the parameters in the objective function you want to minimize

- Useful for
$\square$ Solution of a large linear system of equations
$\square$ Solution of a nonlinear systems of equations
- Special note - some Artificial Neural Network Algorithms use gradient descent on the weights (more on this later)
$\square$ Optimization and control of dynamic systems


## How does the gradient descent algorithm work?

■ Consider first the objective of gradient descent
$\square$ You want to get to the bottom of the hill
$\square$ Start somewhere, then you ski down the hill
$J(\mathbf{x})=\frac{1}{2} x^{T} A x-b^{T} x$


## How do we do this

## mathematically?

■ We want to minimize ( A is assumed symmetric positive definite)

$$
J(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-b^{T} \mathbf{x}
$$

■ We do this by starting with some initial guess for our parameters, and then 'skiing' downhill along the direction $r$ with some 'speed' alpha at each iteration k

$$
x_{k+1}=x_{k}+\alpha_{k} r_{k}
$$

- So we'll proceed iteratively toward the minimum of $J(x)$
$\square$ We want to move down the opposite of the gradient of $\boldsymbol{J}$


## Computing the gradient of $\boldsymbol{J}(\boldsymbol{x})$

- r at iteration k is given by taking the gradient of $\mathrm{J}(\mathrm{x})$ with respect to x

$$
r_{k}=-\nabla J\left(\mathbf{x}_{k}\right)=-\left(A \mathbf{x}_{k}-\mathbf{b}\right)
$$

- With the gradient of J computed by

| Note that <br> Since $A$ is symmetric <br> positive semi-definite |
| :--- |
| $\quad A \mathbf{x}=\mathbf{x}^{T} A$ |

$$
\begin{aligned}
J(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-b^{T} \mathbf{x} \square \nabla J(\mathbf{x}) & =\frac{1}{2} A \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} A-b \\
& =A \mathbf{x}-b
\end{aligned}
$$

So now we have the direction to move at iteration k...

## Computing alpha

- We have to determine the step size (distance to go) at the iteration k
- We will compute the alpha at iteration k that minimizes

$$
J\left(\mathbf{x}_{k}+\alpha_{k} r_{k}\right)
$$

## After a little work, we find

alpha...

$$
\begin{aligned}
J(\mathbf{x}+\alpha r) & =\frac{1}{2}(\mathbf{x}+\alpha \mathbf{r})^{T} A(\mathbf{x}+\alpha \mathbf{r})-b^{T}(\mathbf{x}+\alpha \mathbf{r}) \\
\frac{\partial J(\mathbf{x}+\alpha r)}{\partial \alpha} & =\frac{1}{2} r^{T} A(\mathbf{x}+\alpha \mathbf{r})+\frac{1}{2}(\mathbf{x}+\alpha \mathbf{r})^{T} A \mathbf{r}-b^{T} \mathbf{r}
\end{aligned}
$$

The minimum
occurs at 0
$\frac{\partial J(\mathbf{x}+\alpha r)}{\partial \alpha}=0$

$$
=\alpha r^{T} A r+r^{T} A x-r^{T} b
$$

$$
=\alpha r^{T} A r+r^{T}(A x-b)
$$

$$
=\alpha r^{T} A r-r^{T} r
$$

$$
\frac{\partial J(\mathbf{x}+\alpha r)}{\partial \alpha}=0
$$

$$
\square 0=\alpha r^{T} A r-r^{T} r
$$



## So finally we have each part...

- Given an initial condition, we can iteratively head towards the minimum of a function $J$
$\square$ We compute the direction $r$ and step size alpha at each k
$\square$ If we have a small enough error between Ax-b, we stop
$\square$ Or we stop if we've iterated too many times, as a convergence check


## But...

- There are issues with this method when the objective function is more challenging with very steep sides and long flat valleys (poorly conditioned)
- This method also is a bit inefficient since it must 'tack' back and forth at 90 degree increments
$\square$ Due to successive line minimization and lack of momentum from one iteration to the next



## $\square$ THERE HAS TO BE A BETTER WAY!!!

## THERE IS - Conjugate Gradient Descent

- When you ski, you don't instantaneously tack back and forth, you have some momentum from the previous moment leading you to the next
- With a slight modification to the previous method we can arrive at a method that doesn't get hindered by long narrow valleys


## How CG improves over steepest descent

■ Instead of minimizing over a single alpha, which does one direction at a time for that iteration, we minimize our function in every direction simultaneously while only searching in one direction at a time
$\square$ In other words, to converge in exactly $m$ iterations to the answer, we should minimize over all the steps we'll take at once
$\square$ (ie we can think of this as minimizing in $\mathbf{m}$ directions simultaneously)

- We can do this in any number of search directions
$\square$ Prevents that 'tacking' phenomena exhibited by the gradient descent method


## How it's done...

- We can reduce this problem to minimizing each direction individually provided the different directions are independent of each other, or conjugate in the following sense

$$
p^{(i)^{T}} A p^{(j)}=0, i \neq j
$$

- We can choose our p's so they are conjugate in the following way


## Solving in m iterations

- Consider that we start with our initial guess x_0, then move to our solution, $x \_m$

$$
x_{m}=x_{0}+\sum_{j=0}^{m-1} \alpha_{j} p_{j}
$$

- Substitute that into J, then compute the partial derivative with respect to each alpha, set that equal to zero

$$
J\left(x_{m}\right) \longrightarrow \frac{\partial J\left(x_{m}\right)}{\partial \alpha_{k}}=0
$$

## What does it boil down to?

- We compute a sequence of p's which are conjugate
$\square$ We redefine the descent direction at each iteration after the first to be a linear combination of the direction of steepest descent $r$ and the previous descent direction

$$
\begin{gathered}
\mathbf{p}^{(k)}=\mathbf{r}^{(k)}+\beta \mathbf{p}^{(k-1)} \quad \text { and } \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha \mathbf{p}^{(k)} \\
\beta=\frac{\mathbf{r}^{(k)^{T}} \mathbf{r}^{(k)}}{\mathbf{r}^{(k-1)^{T}} \mathbf{r}^{(k-1)}}, \quad \alpha=\frac{\mathbf{r}^{(k)^{T}} \mathbf{r}^{(k)}}{\mathbf{p}^{(k)^{T}} A \mathbf{p}^{(k)}}
\end{gathered}
$$

## The result



