### CogSci 109: Lecture 20

Mon, Nov. 26, 2007: Review of gradient descent, conjugate gradient

### **Outline for today**

- Announcements
- Review of gradient descent
- Introduction to conjugate gradient
- Introduction to PLU's

#### Announcements

- Homework 5 due today
- Hw 6 will be assigned this week
- Demo code
  - gradient descent
  - Nonlinear function fits
- Readings

# About the Nelder-Mead Simplex algorithm

### Last time we showed examples of the NM algorithm and implementation details in matlab





## Before we go on, a few definitions

Positive definite matrix

□ All eigenvalues are positive

$$(M_{ij} = M_{ji})$$

**Symmetric matrix** (review) - symmetric about





# Last time we also introduced the gradient descent method

- Intuitive algorithm go 'downhill' for the parameters in the objective function you want to minimize
- Useful for
  - Solution of a large linear system of equations
  - Solution of a nonlinear systems of equations
    - Special note some Artificial Neural Network Algorithms use gradient descent on the weights (more on this later)
  - Optimization and control of dynamic systems

## How does the gradient descent algorithm work?

- Consider first the objective of gradient descent
  - You want to get to the bottom of the hill
  - Start somewhere, then you ski down the hill



# How do we do this mathematically?

• We want to minimize (A is assumed symmetric positive definite)  $U(x) = \frac{1}{T} \frac{1}$ 

$$J(\mathbf{x}) = rac{1}{2}\mathbf{x}^T A \mathbf{x} - b^T \mathbf{x}$$

- We do this by starting with some initial guess for our parameters, and then 'skiing' downhill along the direction r with some 'speed' alpha at each iteration k $\overline{x_{k+1} = x_k + \alpha_k r_k}$
- So we'll proceed iteratively toward the minimum of J(x)
  - $\Box$  We want to move down the opposite of the gradient of J

### Computing the gradient of J(x)

r at iteration k is given by taking the gradient of
 J(x) with respect to x

$$r_k = -
abla J(\mathbf{x}_k) = -(A\mathbf{x}_k - \mathbf{b})$$

• With the gradient of J computed by

$$A\mathbf{x} = \mathbf{x}^T A$$

So now we have the direction to move at iteration k...

### **Computing alpha**

- We have to determine the step size (distance to go) at the iteration k
- We will compute the alpha at iteration k that minimizes

$$J(\mathbf{x}_k + lpha_k r_k)$$

# After a little work, we find alpha...

$$J(\mathbf{x} + \alpha r) = \frac{1}{2} (\mathbf{x} + \alpha r)^T A(\mathbf{x} + \alpha r) - b^T (\mathbf{x} + \alpha r)$$
$$\frac{\partial J(\mathbf{x} + \alpha r)}{\partial \alpha} = \frac{1}{2} r^T A(\mathbf{x} + \alpha r) + \frac{1}{2} (\mathbf{x} + \alpha r)^T A \mathbf{r} - b^T \mathbf{r}$$
$$= \alpha r^T A r + r^T A x - r^T b$$
$$= \alpha r^T A r + r^T (A x - b)$$
$$= \alpha r^T A r - r^T r$$
$$\frac{\partial J(\mathbf{x} + \alpha r)}{\partial \alpha} = 0 \quad 0 = \alpha r^T A r - r^T r$$
$$\alpha r^T A r = r^T r \quad \blacksquare$$
$$\alpha r^T A r = r^T r$$
$$\frac{\partial F(\mathbf{x} + \alpha r)}{\partial \alpha} = 0 \quad \blacksquare r^T A r - r^T r$$
$$\frac{\partial F(\mathbf{x} + \alpha r)}{\partial \alpha} = 0 \quad \blacksquare r^T A r - r^T r$$
$$\alpha r^T A r = r^T r$$
$$\blacksquare r^T A r = r^T r$$

### So finally we have each part...

- Given an initial condition, we can iteratively head towards the minimum of a function J
  - We compute the direction r and step size alpha at each k
  - If we have a small enough error between Ax-b, we stop
  - Or we stop if we've iterated too many times, as a convergence check

#### **But...**

- There are issues with this method when the objective function is more challenging with very steep sides and long flat valleys (*poorly conditioned*)
- This method also is a bit inefficient since it must 'tack' back and forth at 90 degree increments
  - Due to successive line minimization and lack of momentum from one iteration to the next
  - THERE HAS TO BE A BETTER WAY!!!



# **THERE IS - Conjugate Gradient Descent**

- When you ski, you don't instantaneously tack back and forth, you have some momentum from the previous moment leading you to the next
- With a slight modification to the previous method we can arrive at a method that doesn't get hindered by long narrow valleys

# How CG improves over steepest descent

- Instead of minimizing over a single alpha, which does one direction at a time for that iteration, we minimize our function in every direction simultaneously while only searching in one direction at a time
  - In other words, to converge in exactly m iterations to the answer, we should minimize over all the steps we'll take at once
  - (ie we can think of this as minimizing in m directions simultaneously)
- We can do this in any number of search directions
  - Prevents that 'tacking' phenomena exhibited by the gradient descent method

#### How it's done...

We can reduce this problem to minimizing each direction individually provided the different directions are independent of each other, or *conjugate* in the following sense

 $p^{(i)^T}Ap^{(j)}=0, i
eq j$ 

We can choose our p's so they are conjugate in the following way

### **Solving in m iterations**

Consider that we start with our initial guess x\_0, then move to our solution, x\_m

$$x_m = x_0 + \sum_{j=0}^{m-1} \alpha_j p_j$$

Substitute that into J, then compute the partial derivative with respect to each alpha, set that equal to zero

$$J(x_m) \qquad \qquad \frac{\partial J(x_m)}{\partial \alpha_k} = 0$$

#### What does it boil down to?

- We compute a sequence of p's which are conjugate
  - We redefine the descent direction at each iteration after the first to be a linear combination of the direction of steepest descent r and the previous descent direction

$$\mathbf{p}^{(k)} = \mathbf{r}^{(k)} + \beta \mathbf{p}^{(k-1)}$$
 and  $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha \mathbf{p}^{(k)}$ 

$$\beta = \frac{\mathbf{r}^{(k)}{}^{T} \mathbf{r}^{(k)}}{\mathbf{r}^{(k-1)}{}^{T} \mathbf{r}^{(k-1)}}, \qquad \alpha = \frac{\mathbf{r}^{(k)}{}^{T} \mathbf{r}^{(k)}}{\mathbf{p}^{(k)}{}^{T} A \mathbf{p}^{(k)}}.$$

### The result

