CogSci1 109: Lecture 20

Mon, Nov. 26, 2007: Review of
gradient descent, conjugate
gradient



Outline for today

B Announcements

m Review of gradient descent

m Introduction to conjugate gradient
m Introduction to PLU’s




Announcements

m Homework 5 due today

m Hw 6 will be assigned this week

® Demo code
gradient descent

Nonlinear function fits

m Readings



"
About the Nelder-Mead Simplex
algorithm

m Last time we showed examples of the NM
algorithm and implementation details in matlab

(c) 2005 P.A. Simionescu




"
Before we go on, a few
definitions

m Positive definite matrix

All eigenvalues are positive

(M;; = Mj;)

B Symmetric matrix (review) - symmetric about

N




=
Last time we also introduced
the gradient descent method

m [ntuitive algorithm - go ‘downhill’ for the parameters in
the objective function you want to minimize

m Useful for

Solution of a large linear system of equations
Solution of a nonlinear systems of equations

m Special note - some Artificial Neural Network Algorithms use
gradient descent on the weights (more on this later)

Optimization and control of dynamic systems



"
How does the gradient descent

algorithm work?

m Consider first the objective of gradient descent
You want to get to the bottom of the hill
Start somewhere, then you ski down the hill

1 Quadratic objective function J
J(X) — gl Az — bT'x I _ __— Start here,

Then move
towards the
minimum

.J(p1 ,pz)-nhjectiue fnctn

5
Param 2 (p,) -5 Param 1 (p,)




=
How do we do this
mathematically?

m We want to minimize (A is assumed symmetric positive

definite) 1
J(x) = §XTAX —bl'x

m We do this by starting with some 1nitial guess for our
parameters, and then ‘skiing’ downhill along the direction

r with some ‘speed’ alpha at each iteration k
Tht1l = Tk T+ QT

m So we’ll proceed iteratively toward the minimum of J(x)
We want to move down the opposite of the gradient of J



Computing the gradient of J(x)

m 1 at iteration k 1s given by taking the gradient of

J(x) with respect to x Note ther

re = _VJ(Xk) — _(Axk — b) Since A is symmetric
positive semi-definite

m With the gradient of J computed by Ax — T A

%

J(x) = %XTAX —blx ) VJ(x) = %Ax + %XTA —b

= Ax —b

So now we have the direction to move at iteration k...



Computing alpha

® We have to determine the step size (distance to go)
at the 1teration k

m We will compute the alpha at 1teration k that
minimizes

J(Xk - @P.:Tk:)




After a little work, we find

alpha...

J(x+ar) = %(X +ar)" A(x + ar) — b7 (x + ar)

oJ(x+ar) 1

= §TTA(X + ar) + ;(X +ar)’ Ar — bTr

Oa
occurs at O — orTAr + 1T (Az — b)
\ —art Ar —rly
0J(x + ar
( ):U :>OZQTTAT—?"TT
Oa
T A _ T ..
ar- Ar =r'r <« We can divide here because
T these are all scalars (one
rer
o= number)

rI Ar




So finally we have each part...

m Given an 1nitial condition, we can 1teratively head
towards the minimum of a function J

We compute the direction r and step size alpha at
each k

If we have a small enough error between Ax-b, we
stop

Or we stop if we’ve iterated too many times, as a
convergence check



" A
But...

m There are 1ssues with this
method when the objective
function 1s more challenging -
with very steep sides and long ol
flat valleys (poorly conditioned)

m This method also 1s a bit

10

Y '-\- \._\.
\ \1.- \

inefficient since it must ‘tack’ | AN

back and forth at 90 degree A

increments : o \Q\
Due to successive line ob o i Kf RS
minimization and lack of | ~ !Starting
momentum from one iteration @, = /pomt
to the next - % 4 -2 0 2 4

THERE HAS TO BE A BETTER
WAY!H!



THERE IS - Conjugate Gradient
Descent

® When you ski, you don’t instantaneously tack
back and forth, you have some momentum from
the previous moment leading you to the next

m With a slight modification to the previous method
we can arrive at a method that doesn’t get
hindered by long narrow valleys



How CG improves over steepest
descent

m Instead of minimizing over a single alpha, which does one
direction at a time for that iteration, we minimize our
function in every direction simultaneously while only
searching 1n one direction at a time

In other words, to converge in exactly m iterations to the
answer, we should minimize over all the steps we’ll take
at once

(ie we can think of this as minimizing in m directions
simultaneously)
® We can do this in any number of search directions

Prevents that ‘tacking’ phenomena exhibited by the
gradient descent method



How it’s done...

m We can reduce this problem to minimizing each
direction individually provided the different
directions are independent of each other, or
conjugate 1n the following sense

p(i)TAp(j) =0, # §

m We can choose our p’s so they are conjugate 1n
the following way



Solving in m iterations

m Consider that we start with our 1nitial guess x 0,
then move to our solution, X m

m—1

Tm = Zo + E ;P
=0

m Substitute that into J, then compute the partial

derivative with respect to each alpha, set that
equal to zero

7o) R e =




What does it boil down to?

m We compute a sequence of p’s which are
conjugate

We redefine the descent direction at each iteration
after the first to be a linear combination of the
direction of steepest descent r and the previous
descent direction

; (BT L (k) ()T (k)
= . a = :
r(k—1) T p(k-1) p) 1A pk)




The result




