
CogSci 109: Lecture 20

Mon, Nov. 26, 2007: Review of
gradient descent, conjugate
gradient



Outline for today

 Announcements

 Review of gradient descent

 Introduction to conjugate gradient

 Introduction to PLU’s



Announcements

 Homework 5 due today

 Hw 6 will be assigned this week

 Demo code
 gradient descent

 Nonlinear function fits

 Readings



About the Nelder-Mead Simplex
algorithm
 Last time we showed examples of the NM

algorithm and implementation details in matlab



Before we go on, a few
definitions

 Positive definite matrix
 All eigenvalues are positive

 Symmetric matrix (review) - symmetric about
the diagonal



Last time we also introduced
the gradient descent method
 Intuitive algorithm - go ‘downhill’ for the parameters in

the objective function you want to minimize

 Useful for
 Solution of a large linear system of equations

 Solution of a nonlinear systems of equations

 Special note - some Artificial Neural Network Algorithms use
gradient descent on the weights (more on this later)

 Optimization and control of dynamic systems



How does the gradient descent
algorithm work?
 Consider first the objective of gradient descent

 You want to get to the bottom of the hill

 Start somewhere, then you ski down the hill

Start here, 

Then move 
towards the 
minimum

*

*



How do we do this
mathematically?
 We want to minimize (A is assumed symmetric positive

definite)

 We do this by starting with some initial guess for our
parameters, and then ‘skiing’ downhill along the direction
r with some ‘speed’ alpha at each iteration k

 So we’ll proceed iteratively toward the minimum of J(x)
 We want to move down the opposite of the gradient of J



Computing the gradient of J(x)

 r at iteration k is given by taking the gradient of
J(x) with respect to x

 With the gradient of J computed by

Note that
Since A is symmetric 
positive semi-definite

So now we have the direction to move at iteration k…



Computing alpha

 We have to determine the step size (distance to go)
at the iteration k

 We will compute the alpha at iteration k that
minimizes



After a little work, we find
alpha…

We can divide here because
these are all scalars (one
number)

The minimum 
occurs at 0



So finally we have each part…

 Given an initial condition, we can iteratively head
towards the minimum of a function J
 We compute the direction r and step size alpha at

each k

 If we have a small enough error between Ax-b, we

stop

 Or we stop if we’ve iterated too many times, as a

convergence check



But…

 There are issues with this
method when the objective
function is more challenging -
with very steep sides and long
flat valleys (poorly conditioned)

 This method also is a bit
inefficient since it must ‘tack’
back and forth at 90 degree
increments
 Due to successive line

minimization and lack of
momentum from one iteration
to the next

 THERE HAS TO BE A BETTER
WAY!!!



THERE IS - Conjugate Gradient
Descent
 When you ski, you don’t instantaneously tack

back and forth, you have some momentum from
the previous moment leading you to the next

 With a slight modification to the previous method
we can arrive at a method that doesn’t get
hindered by long narrow valleys



How CG improves over steepest
descent
 Instead of minimizing over a single alpha, which does one

direction at a time for that iteration, we minimize our
function in every direction simultaneously while only
searching in one direction at a time
 In other words, to converge in exactly m iterations to the

answer, we should minimize over all the steps we’ll take
at once

  (ie we can think of this as minimizing in m directions
simultaneously)

 We can do this in any number of search directions
 Prevents that ‘tacking’ phenomena exhibited by the

gradient descent method



How it’s done…

 We can reduce this problem to minimizing each
direction individually provided the different
directions are independent of each other, or
conjugate in the following sense

 We can choose our p’s so they are conjugate in
the following way



Solving in m iterations

 Consider that we start with our initial guess x_0,
then move to our solution, x_m

 Substitute that into J, then compute the partial
derivative with respect to each alpha, set that
equal to zero



What does it boil down to?

 We compute a sequence of p’s which are
conjugate
 We redefine the descent direction at each iteration

after the first to be a linear combination of the

direction of steepest descent r and the previous
descent direction



The result

Steepest descent Conjugate
gradient


