CogSci 109: Lecture 19

Wednesday Nov. 21, 2007
More optimization, function
minimization: Nelder-Mead

explanation/examples, introduction to
gradient descent

Outline for today

B Announcements

m Nelder-Mead Simplex explanation, more
examples and matlab

m Introduction to gradient descent

Announcements

m Compliment vs. complement
Compliment - An expression of praise, admiration, or congratulation.
Complement -
= An angle related to another so that the sum of their measures
is 90°
m Either of two parts that complete the whole or mutually
complete each other
= More formally:

In general, the word ”complement” refers to that subset F’ of some set S which
excludes a given subset F'. Taking F' and its complement F’ together then gives the
whole of the original set. The notations F’ and F are commonly used to denote the
complement of a set F.

(http://mathworld.wolfram.com/Complement.html)

Announcements

m Reminder - to get 5 bonus points, homework must
be turned 1n today before midnight via email or 1n
person

If you turn in via email you must turn in a printed
version on Monday

m 100 words for 3.4 ->200, still 500 max per
assignment

=
Last time we discussed the
Nelder-Mead Simplex method

m [t’s the built-in nonlinear function minimization
routine 1n Matlab

m fminsearch()

m One of the most widely used methods of
unconstrained nonlinear optimization

m Published in 1965

J. A. Nelder and R. Mead, A simplex method for function
minimization, Computer Journal 7 (1965), 308—313.

See linked page on website for (short) collection of NM papers

What does NM do?

m Uses a simplex (a polytope in N+1 vertices in N
dimensions)
A line segment on a line
A triangle on a plane

A tetrahedron in 3d space, etc

m Finds an approximate locally optimal solution to a
problem with N variables (if the objective
function varies smoothly)

What does a simplex look like?

*Think of it as an N-Dimensional triangle

*For specifics, start by reading mathworld and wikipedia definitions of
simplex and related important details like convexity and convex hulls:

ehttp://en.wikipedia.org/wiki/Simplex

ehttp://mathworld.wolfram.com/Simplex.html

=
=]

1D ->line

2D ->triangle

3D ->tetrahedron

How does NM use the simplex?

m Let’s see - first consider the following challenging
objective function we want to minimize over the variables
x and Y (this is a typical test problem for optimization algorithms)

f(z,y) = (1 —z)* + 100(y — z%)*

Why is this challenging?

Rosenbrock test function

T

A.k.a. -
Rosenbrock's
valley or
Rosenbrock's
banana function.

y -100 -100

Note the long narrow
valley. That makes it
tough to find the
global minimum with
an optimization
algorithm

"
Let’s take a look at the NM
simplex algorithm in action

m The NM algorithm trying to minimize the Rosenbrock function:

Nelder-Mead Simplex search over Banana Function

=1

(c) 2005 P A Simionescu

NM computes the simplex, and
compares points

m If one is worse (higher) on the cost (objective) function,
the simplex reflects that point about the centroid
(generalized center) of the simplex and thus makes a new
stimplex which 1s hopefully better

m [f the points are close 1n their value the simplex shrinks

m If the points are far away in their value (steep slope) the
simplex expands

m Sce the readings for details
Intro - wikipedia link
Original 1965 paper
Convergence properties paper

=
Let’s look at another function

fl@y)=(*+y—11)° + (z +y* = 7)°

m Himmelblau’s function

m Global Minimum
£(3,2) =0

m Local Minima:
f (-3.78, -3.28) = 0.0054
f(-2.81, 3.13) = 0.0085
f (3.85,-1.85) = 0.0011

m In this case, multiple

minima exist

Himmelblau test function

How does NM approach this?

m NM finding local minimum of Himmelblau function

Himmelblau test function

Nelder-Mead Simplex search over Himmelblau function

X1

|
| |
[
4 |
44 | —
R v ———amareet? T —— T T —— ™
= 0 3 ¥ 5 &

-8

() P.A. Simionescu 2006

A few notes that are important

m Convex functions have one global minimum and
no additional local minima

They can still be hard to minimize though - like for
the Rosenbrock function

There exist many techniques which rapidly
converge to the solution of convex functions

A few more notes

m Non-convex functions may have multiple local minima
which are not anywhere near the global minimum
For example, the Himmelblau function
What can we do?

m Many strategies - it’s hard to know what is the absolute global
minimum when you can’t explicitly compute it

Can restart with multiple different initial conditions and
see if you get the same minima

Global optimization is a whole branch of mathematics
where one attempts to find deterministic algorithms
guaranteed to converge to globally optimal solutions in
finite time

m Take home message - use any algorithm with caution and
awareness

" B
Why not just compute all the
minima of a function over all

the space of interest?

® You might not know the function!

Think if | told you to find the lowest part of campus
blindfolded and with your ears and sense of smell
somehow ‘disabled’

You’d have to feel your way there, you couldn’t
predict the final lowest point, if you had no prior
knowledge

P
G

What if you know the function? (

m [t might be that you know the function but it’s
unreasonable to calculate all the minima
Too computationally expensive!

= you’d have to compute the function at n points, and if/it’s an m-
dimensional function (ie we have m parameters to fifd), m being
big and n being big, you would have to compute n”/n points

m e.g. - 10D, 100pts would be 100"10=1e20 computations of the
function

s Comparison - our computers presently are on th€ order of 10”9
computations per second (GHz), so assuming ifi one cycle we can
compute the function, which isn’t true, but fof the sake of argument,
consider that even this would take 10"11 segonds

This is 3.1710e+03 years!!! Oops:)

m There has to be a better way!!! And we can use search todo itin a
few computations

"
Detailed description of matiab
application of fminsearch()

<<to matlab!!!>>

One common theme in optimization
is trying to find a minimum

m Sometimes we don’t need to deal with nonlinearity, and
as such can use search methods which are specifically
designed/optimized for such problems

m Skiing - you want to get to the bottom of the hill as fast as
possible to get the hot chocolate
Obvious approach is to choose the direction of steepest
descent down the mountain
m Leadsusto
Gradient descent (a.k.a. the method of steepest descent)
Do exactly what we just said

"
How does gradient descent
work (an introduction)?

m Start with the cost function

Make it (hopefully) quadratic so it has the nice bowl
shape, and a definite global minimum (though
complicated functions may have local minima)

We want to find a way to make
m Mp-k = something as small as possible

m So we’ll start at some guess for p, then change p at each
step to be going ‘down the hill’ of the cost function

The algorithm

m Algorithm:
Choose a starting point p(0)
Repeat this until we’re satisfied that we’re close
= Compute the distance to change the vector p
= Compute the direction to change the vector p
= Update p
Goto repeat

m It turns out that the steepest direction and step

distance is found by looking at the ‘gradient’ of
the cost function

"
What does the resulting
behavior look like?

