
CogSci 109: Lecture 19

Wednesday Nov. 21, 2007
More optimization, function
minimization: Nelder-Mead

explanation/examples, introduction to
gradient descent



Outline for today

 Announcements

 Nelder-Mead Simplex explanation, more
examples and matlab

 Introduction to gradient descent



Announcements

 Compliment vs. complement
 Compliment - An expression of praise, admiration, or congratulation.
 Complement -

 An angle related to another so that the sum of their measures
is 90°

 Either of two parts that complete the whole or mutually
complete each other

 More formally:

 (http://mathworld.wolfram.com/Complement.html)



Announcements

 Reminder - to get 5 bonus points, homework must
be turned in today before midnight via email or in
person
 If you turn in via email you must turn in a printed

version on Monday

 100 words for 3.4 ->200, still 500 max per
assignment



Last time we discussed the
Nelder-Mead Simplex method
 It’s the built-in nonlinear function minimization

routine in Matlab
 fminsearch()
 One of the most widely used methods of

unconstrained nonlinear optimization
 Published in 1965

 J. A. Nelder and R. Mead, A simplex method for function
minimization, Computer Journal 7 (1965), 308–313.

 See linked page on website for (short) collection of NM papers



What does NM do?

 Uses a simplex (a polytope in N+1 vertices in N
dimensions)
 A line segment on a line

 A triangle on a plane

 A tetrahedron in 3d space, etc

 Finds an approximate locally optimal solution to a
problem with N variables (if the objective
function varies smoothly)



What does a simplex look like?

1D ->line 2D ->triangle 3D ->tetrahedron

•Think of it as an N-Dimensional triangle
•For specifics, start by reading mathworld and wikipedia definitions of
simplex and related important details like convexity and convex hulls:

•http://en.wikipedia.org/wiki/Simplex

•http://mathworld.wolfram.com/Simplex.html



How does NM use the simplex?

 Let’s see - first consider the following challenging
objective function we want to minimize over the variables
x and y (this is a typical test problem for optimization algorithms)

Why is this challenging?
Note the long narrow
valley.  That makes it
tough to find the
global minimum with
an optimization
algorithm

A.k.a. -
Rosenbrock's
valley or
Rosenbrock's
banana function.



Let’s take a look at the NM
simplex algorithm in action
 The NM algorithm trying to minimize the Rosenbrock function:



NM computes the simplex, and
compares points
 If one is worse (higher) on the cost (objective) function,

the simplex reflects that point about the centroid
(generalized center) of the simplex and thus makes a new
simplex which is hopefully better

 If the points are close in their value the simplex shrinks
 If the points are far away in their value (steep slope) the

simplex expands
 See the readings for details

 Intro - wikipedia link

 Original 1965 paper

 Convergence properties paper



Let’s look at another function

 Himmelblau’s function
 Global Minimum

 f (3,2) = 0

 Local Minima:
 f (-3.78, -3.28) = 0.0054
 f (-2.81, 3.13) = 0.0085
 f (3.85,-1.85) = 0.0011

 In this case, multiple
minima exist



How does NM approach this?

 NM finding local minimum of Himmelblau function



A few notes that are important

 Convex functions have one global minimum and
no additional local minima
 They can still be hard to minimize though - like for

the Rosenbrock function

 There exist many techniques which rapidly

converge to the solution of convex functions



A few more notes

 Non-convex functions may have multiple local minima
which are not anywhere near the global minimum
 For example, the Himmelblau function

 What can we do?

 Many strategies - it’s hard to know what is the absolute global
minimum when you can’t explicitly compute it

 Can restart with multiple different initial conditions and
see if you get the same minima

 Global optimization is a whole branch of mathematics
where one attempts to find deterministic algorithms
guaranteed to converge to globally optimal solutions in
finite time

 Take home message - use any algorithm with caution and
awareness



Why not just compute all the
minima of a function over all
the space of interest?
 You might not know the function!

 Think if I told you to find the lowest part of campus

blindfolded and with your ears and sense of smell

somehow ‘disabled’

 You’d have to feel your way there, you couldn’t
predict the final lowest point, if you had no prior

knowledge



What if you know the function?

 It might be that you know the function but it’s
unreasonable to calculate all the minima
 Too computationally expensive!

 you’d have to compute the function at n points, and if it’s an m-
dimensional function (ie we have m parameters to find), m being
big and n being big, you would have to compute n^m points

 e.g. - 10D, 100pts would be 100^10=1e20 computations of the
function

 Comparison - our computers presently are on the order of 10^9
computations per second (GHz), so assuming in one cycle we can
compute the function, which isn’t true, but for the sake of argument,
consider that even this would take 10^11 seconds

 This is 3.1710e+03 years!!!  Oops:)

 There has to be a better way!!!  And we can use search to do it in a
few computations



Detailed description of matlab
application of fminsearch( )

<<to matlab!!!>>



One common theme in optimization
is trying to find a minimum
 Sometimes we don’t need to deal with nonlinearity, and

as such can use search methods which are specifically
designed/optimized for such problems

 Skiing - you want to get to the bottom of the hill as fast as
possible to get the hot chocolate
 Obvious approach is to choose the direction of steepest

descent down the mountain

 Leads us to
 Gradient descent (a.k.a. the method of steepest descent)

 Do exactly what we just said



How does gradient descent
work (an introduction)?
 Start with the cost function

 Make it (hopefully) quadratic so it has the nice bowl

shape, and a definite global minimum (though

complicated functions may have local minima)

 We want to find a way to make

 Mp-k = something as small as possible

 So we’ll start at some guess for p, then change p at each
step to be going ‘down the hill’ of the cost function

€ 



The algorithm

 Algorithm:
Choose a starting point p(0)

 Repeat this until we’re satisfied that we’re close

 Compute the distance to change the vector p
 Compute the direction to change the vector p
 Update p

 Goto repeat

 It turns out that the steepest direction and step
distance is found by looking at the ‘gradient’ of
the cost function



What does the resulting
behavior look like?


