
CogSci 109: Lecture 19

Wednesday Nov. 21, 2007
More optimization, function
minimization: Nelder-Mead

explanation/examples, introduction to
gradient descent



Outline for today

 Announcements

 Nelder-Mead Simplex explanation, more
examples and matlab

 Introduction to gradient descent



Announcements

 Compliment vs. complement
 Compliment - An expression of praise, admiration, or congratulation.
 Complement -

 An angle related to another so that the sum of their measures
is 90°

 Either of two parts that complete the whole or mutually
complete each other

 More formally:

 (http://mathworld.wolfram.com/Complement.html)



Announcements

 Reminder - to get 5 bonus points, homework must
be turned in today before midnight via email or in
person
 If you turn in via email you must turn in a printed

version on Monday

 100 words for 3.4 ->200, still 500 max per
assignment



Last time we discussed the
Nelder-Mead Simplex method
 It’s the built-in nonlinear function minimization

routine in Matlab
 fminsearch()
 One of the most widely used methods of

unconstrained nonlinear optimization
 Published in 1965

 J. A. Nelder and R. Mead, A simplex method for function
minimization, Computer Journal 7 (1965), 308–313.

 See linked page on website for (short) collection of NM papers



What does NM do?

 Uses a simplex (a polytope in N+1 vertices in N
dimensions)
 A line segment on a line

 A triangle on a plane

 A tetrahedron in 3d space, etc

 Finds an approximate locally optimal solution to a
problem with N variables (if the objective
function varies smoothly)



What does a simplex look like?

1D ->line 2D ->triangle 3D ->tetrahedron

•Think of it as an N-Dimensional triangle
•For specifics, start by reading mathworld and wikipedia definitions of
simplex and related important details like convexity and convex hulls:

•http://en.wikipedia.org/wiki/Simplex

•http://mathworld.wolfram.com/Simplex.html



How does NM use the simplex?

 Let’s see - first consider the following challenging
objective function we want to minimize over the variables
x and y (this is a typical test problem for optimization algorithms)

Why is this challenging?
Note the long narrow
valley.  That makes it
tough to find the
global minimum with
an optimization
algorithm

A.k.a. -
Rosenbrock's
valley or
Rosenbrock's
banana function.



Let’s take a look at the NM
simplex algorithm in action
 The NM algorithm trying to minimize the Rosenbrock function:



NM computes the simplex, and
compares points
 If one is worse (higher) on the cost (objective) function,

the simplex reflects that point about the centroid
(generalized center) of the simplex and thus makes a new
simplex which is hopefully better

 If the points are close in their value the simplex shrinks
 If the points are far away in their value (steep slope) the

simplex expands
 See the readings for details

 Intro - wikipedia link

 Original 1965 paper

 Convergence properties paper



Let’s look at another function

 Himmelblau’s function
 Global Minimum

 f (3,2) = 0

 Local Minima:
 f (-3.78, -3.28) = 0.0054
 f (-2.81, 3.13) = 0.0085
 f (3.85,-1.85) = 0.0011

 In this case, multiple
minima exist



How does NM approach this?

 NM finding local minimum of Himmelblau function



A few notes that are important

 Convex functions have one global minimum and
no additional local minima
 They can still be hard to minimize though - like for

the Rosenbrock function

 There exist many techniques which rapidly

converge to the solution of convex functions



A few more notes

 Non-convex functions may have multiple local minima
which are not anywhere near the global minimum
 For example, the Himmelblau function

 What can we do?

 Many strategies - it’s hard to know what is the absolute global
minimum when you can’t explicitly compute it

 Can restart with multiple different initial conditions and
see if you get the same minima

 Global optimization is a whole branch of mathematics
where one attempts to find deterministic algorithms
guaranteed to converge to globally optimal solutions in
finite time

 Take home message - use any algorithm with caution and
awareness



Why not just compute all the
minima of a function over all
the space of interest?
 You might not know the function!

 Think if I told you to find the lowest part of campus

blindfolded and with your ears and sense of smell

somehow ‘disabled’

 You’d have to feel your way there, you couldn’t
predict the final lowest point, if you had no prior

knowledge



What if you know the function?

 It might be that you know the function but it’s
unreasonable to calculate all the minima
 Too computationally expensive!

 you’d have to compute the function at n points, and if it’s an m-
dimensional function (ie we have m parameters to find), m being
big and n being big, you would have to compute n^m points

 e.g. - 10D, 100pts would be 100^10=1e20 computations of the
function

 Comparison - our computers presently are on the order of 10^9
computations per second (GHz), so assuming in one cycle we can
compute the function, which isn’t true, but for the sake of argument,
consider that even this would take 10^11 seconds

 This is 3.1710e+03 years!!!  Oops:)

 There has to be a better way!!!  And we can use search to do it in a
few computations



Detailed description of matlab
application of fminsearch( )

<<to matlab!!!>>



One common theme in optimization
is trying to find a minimum
 Sometimes we don’t need to deal with nonlinearity, and

as such can use search methods which are specifically
designed/optimized for such problems

 Skiing - you want to get to the bottom of the hill as fast as
possible to get the hot chocolate
 Obvious approach is to choose the direction of steepest

descent down the mountain

 Leads us to
 Gradient descent (a.k.a. the method of steepest descent)

 Do exactly what we just said



How does gradient descent
work (an introduction)?
 Start with the cost function

 Make it (hopefully) quadratic so it has the nice bowl

shape, and a definite global minimum (though

complicated functions may have local minima)

 We want to find a way to make

 Mp-k = something as small as possible

 So we’ll start at some guess for p, then change p at each
step to be going ‘down the hill’ of the cost function

€ 



The algorithm

 Algorithm:
Choose a starting point p(0)

 Repeat this until we’re satisfied that we’re close

 Compute the distance to change the vector p
 Compute the direction to change the vector p
 Update p

 Goto repeat

 It turns out that the steepest direction and step
distance is found by looking at the ‘gradient’ of
the cost function



What does the resulting
behavior look like?


