CogSci 109: Lecture 19

Wednesday Nov. 21, 2007
More optimization, function
minimization: Nelder-Mead explanation/examples, introduction to gradient descent

Outline for today

- Announcements
- Nelder-Mead Simplex explanation, more examples and matlab
- Introduction to gradient descent

Announcements

- Compliment vs. complement
\square Compliment - An expression of praise, admiration, or congratulation.
\square Complement -
- An angle related to another so that the sum of their measures is 90°
- Either of two parts that complete the whole or mutually complete each other
- More formally:

In general, the word "complement" refers to that subset F^{\prime} of some set S which excludes a given subset F. Taking F and its complement F^{\prime} together then gives the whole of the original set. The notations F^{\prime} and \bar{F} are commonly used to denote the complement of a set F.
\square (http://mathworld.wolfram.com/Complement.htmI)

Announcements

- Reminder - to get 5 bonus points, homework must be turned in today before midnight via email or in person
\square If you turn in via email you must turn in a printed version on Monday
- 100 words for $3.4->200$, still 500 max per assignment

Last time we discussed the Nelder-Mead Simplex method

- It's the built-in nonlinear function minimization routine in Matlab
- fminsearch()
- One of the most widely used methods of unconstrained nonlinear optimization
- Published in 1965
\square J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal 7 (1965), 308-313.
\square See linked page on website for (short) collection of NM papers

What does NM do?

■ Uses a simplex (a polytope in $\mathrm{N}+1$ vertices in N dimensions)
\square A line segment on a line
\square A triangle on a plane
\square A tetrahedron in 3d space, etc
■ Finds an approximate locally optimal solution to a problem with N variables (if the objective function varies smoothly)

What does a simplex look like?

-Think of it as an N -Dimensional triangle
-For specifics, start by reading mathworld and wikipedia definitions of simplex and related important details like convexity and convex hulls:
-http://en.wikipedia.org/wiki/Simplex
-http://mathworld.wolfram.com/Simplex.html

How does NM use the simplex?

- Let's see - first consider the following challenging objective function we want to minimize over the variables x and y (this is a typical test problem for optimization algorithms)

$$
f(x, y)=(1-x)^{2}+100\left(y-x^{2}\right)^{2}
$$

Why is this challenging?

Note the long narrow valley. That makes it tough to find the global minimum with an optimization algorithm

Let's take a look at the NM simplex algorithm in action

- The NM algorithm trying to minimize the Rosenbrock function:

NM computes the simplex, and

 compares points- If one is worse (higher) on the cost (objective) function, the simplex reflects that point about the centroid (generalized center) of the simplex and thus makes a new simplex which is hopefully better
- If the points are close in their value the simplex shrinks
- If the points are far away in their value (steep slope) the simplex expands
- See the readings for details
\square Intro - wikipedia link
\square Original 1965 paper
\square Convergence properties paper

Let's look at another function

$$
f(x, y)=\left(x^{2}+y-11\right)^{2}+\left(x+y^{2}-7\right)^{2}
$$

- Himmelblau's function

Himmelblau test function

- Global Minimum
$\square \mathrm{f}(3,2)=0$
- Local Minima:
$\square \mathrm{f}(-3.78,-3.28)=0.0054$
$\square \mathrm{f}(-2.81,3.13)=0.0085$
$\square \mathrm{f}(3.85,-1.85)=0.0011$
- In this case, multiple minima exist

How does NM approach this?

■ NM finding local minimum of Himmelblau function

A few notes that are important

- Convex functions have one global minimum and no additional local minima
\square They can still be hard to minimize though - like for the Rosenbrock function
\square There exist many techniques which rapidly converge to the solution of convex functions

A few more notes

- Non-convex functions may have multiple local minima which are not anywhere near the global minimum
\square For example, the Himmelblau function
\square What can we do?
- Many strategies - it's hard to know what is the absolute global minimum when you can't explicitly compute it
\square Can restart with multiple different initial conditions and see if you get the same minima
\square Global optimization is a whole branch of mathematics where one attempts to find deterministic algorithms guaranteed to converge to globally optimal solutions in finite time
- Take home message - use any algorithm with caution and awareness

Why not just compute all the minima of a function over all

 the space of interest?- You might not know the function!
\square Think if I told you to find the lowest part of campus blindfolded and with your ears and sense of smell somehow 'disabled'
\square You'd have to feel your way there, you couldn't predict the final lowest point, if you had no prior knowledge

What if you know the function?

- It might be that you know the function but it's unreasonable to calculate all the minima
\square Too computationally expensive!
- you'd have to compute the function at n points, and $\mathrm{if} / \mathrm{it}$'s an mdimensional function (ie we have m parameters to fipd), m being big and n being big, you would have to compute $n \wedge n$ points
- e.g. - $10 \mathrm{D}, 100$ pts would be $100^{\wedge} 10=1 \mathrm{e} 20$ computations of the function
- Comparison - our computers presently are on the order of $10^{\wedge} 9$ computations per second (GHz), so assuming ih one cycle we can compute the function, which isn't true, but fo the sake of argument, consider that even this would take $10^{\wedge} 11$ seqonds
\square This is $\mathbf{3 . 1 7 1 0 e + 0 3}$ years!!! Oops:)
- There has to be a better way!!! And we can use search to do it in a few computations

Detailed description of matlab application of fminsearch()

<<to matlab!!!>>

One common theme in optimization is trying to find a minimum

- Sometimes we don't need to deal with nonlinearity, and as such can use search methods which are specifically designed/optimized for such problems
■ Skiing - you want to get to the bottom of the hill as fast as possible to get the hot chocolate
\square Obvious approach is to choose the direction of steepest descent down the mountain
- Leads us to
\square Gradient descent (a.k.a. the method of steepest descent)
\square Do exactly what we just said

How does gradient descent work (an introduction)?

- Start with the cost function
\square Make it (hopefully) quadratic so it has the nice bowl shape, and a definite global minimum (though complicated functions may have local minima)
\square We want to find a way to make
- $\mathrm{Mp}-\mathrm{k}=$ something as small as possible
- So we'll start at some guess for p, then change p at each step to be going 'down the hill' of the cost function

The algorithm

- Algorithm:

Choose a starting point $\mathbf{p (0)}$
\square Repeat this until we're satisfied that we're close

- Compute the distance to change the vector p
- Compute the direction to change the vector p
- Update p
\square Goto repeat
- It turns out that the steepest direction and step distance is found by looking at the 'gradient' of the cost function

What does the resulting behavior look like?

