CogSci 109: Lecture 17

Friday Nov. 16, 2007
Nonlinear interpolation (Splines examples), Error analysis

Outline for today

- Announcements
- Uncertainty
\square Definition
\square A model for thought - the impossibility of certainty
\square What is the question uncertainty brings into focus?
- Computing estimation error

■ Different error estimates

- Error analysis in terms of methods discussed so far
\square All these methods are models
\square Modeling based on data
\square Examples from last few lectures
- Comparing fits with error analysis

Announcements

- Midterms will be handed back on Monday
- Homework assigned tonight
\square Simple short
\square Find and read a paper which applies one of the techniques outlined in the assignment
\square Answer conceptual questions
- Reading posted later today

Uncertainty

- Error does not mean, in science, mistake
\square It means the level of uncertainty in measurements and calculations
\square Can't eliminate by being careful, must instead minimize them
- Basically want to have an estimate which is as reliable as possible
\square 'keep an eye on' your uncertainty

Impossibility of certainty

- No physical quantity can be measured with absolute certainty
\square Wood door example
\square Changing brain state, structure, dynamics
- Mathematical approximations to real systems are ALWAYS approximations, no matter how good
\square Any model you make is ONLY an approximation and should NEVER be confused with the real system
- Wrong: "The Brain is computing the inverse of this matrix"
- Right: "Our model approximates what the brain is doing by computing the inverse of this matrix"

The question...

- The question is not whether you are right or not
- The question is whether your approximation is good enough to be useful, dependent on what you (and probably the rest of science) consider to be 'good enough'

Computing the estimated error

- One way to assess how good your model is consists of computing an estimated error
\square Typically you then decide whether your error is 'within bounds'
- (you create a boundary, such as the error in measuring/predicting position of a limb in space must be less than 10 inches)
- Uses one of many possible methods

Different error estimates

- There are many ways to estimate errors, here are a couple of common ones
\square To get a single \#- can use various norms
- 2-norm

$$
\|e\|_{2}=\sqrt{\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}}
$$

- Mean-squared-error

$$
M S E=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

\square Curve - simple error (for a time dependent signal $\mathbf{y}(\mathbf{t})$)

$$
e(t)=y(t)-\hat{y}(t)
$$

\square Curve - prediction error

$$
e_{p}(t)=y(t)-\hat{y}(t \mid t-1)
$$

We've already developed several models and methods!

■ Least squares is a very common method of fitting a model
\square Works by minimizing an estimate of modeling error \square Linear model, nonlinear model

- Linear and nonlinear methods of interpolation are models of data approximation
\square Computes curves which exactly pass through data points or use the data to control aspects of the curve
\square LERP, BERP, TERP, SLERP, Splines and lagrange

Different ways of modeling based on data

- Record all your data, then create a fit and study the resulting model
- Record all your data, split the recorded data into different groups
\square use one group to fit a model
\square then the other to check and see how well does your model predict what the system does (this is called model validation - or 'invalidation')

Example from the last few classes of computing error

■ Approximation of $y=e^{x}$ using the various methods we know already

- I generated simulated data by computing $\mathrm{y}=\exp (\mathrm{x})$ for a domain of $[0,1]$ at three points $(0.0,0.5,1.0)$
\square Then I created a linear least squares fit, a quadratic least squares fit, and Lagrange fits

Assessing the models

- I assess how well each model fit does by first plotting the error between the data and the different methods
- Then I plot the real function (or data) vs. the different methods along a continuous curve

Plot of actual data and various data fits

We can also compute the error as a single quantity
 ■ $\mathrm{e} 2 \mathrm{ll} \mathrm{s}=125.7192$

- $\mathrm{e} 2 \mathrm{nll} \mathrm{s}=10.9367$

■ $\mathrm{e} 2 \mathrm{lag}=86.3331$

- From this we see that over this interval, the nonlinear least squares polynomial fits the data the best if we're trying to minimize this error as a criterion for goodness of fit
- Again it depends on our criterion, as the lagrange has the lowest error over the domain of data used for computing the fit
\square It doesn't extrapolate the future points as well in this case

