ogSci 109: Lecture 12

Wednesday Oct 31, 2007
Nonlinear least squares, definition of
regression (linear vs. nonlinear
regression), correlation and
interpretation



Outline for today

B Announcements

Homework 4 assigned late wed night, due Wed of next
week

Midterm next Friday?

m Clarifications about linear equations vs. strict linearity
m Linear regression

Introduction to nonlinear least squares

m Correlation coefficient



Clarifications about linear

equations vs. linear systems

m Last time we referred to y=mx+b as a linear
equation

A linear equation is commonly referred to as an
equation whose curve is represented by a constant

coefficient or a constant times a variable whose
power is 1

Commonly represented as a 1st degree polynomial

(with the highest order variable (the power of x) is
1)

But...



"
Clarification about linear
equations vs. linear systems

m This 1s not the same as a linear function or linear map

® You may note that y=mx-+b, if b is nonzero, does not
satisty both tests for linearity (f(mx,+nx,)!=mfi(x,)+nf(x,))
It is additive, but not homogeneous

It is commonly referred to as a linear equation because it
defines a straight line in Cartesian coordinates

Must be differentiated from strict linearity

m This is referred to as an affine transformation (or affine map) when
b 1s nonzero

m Affine transformations are more general than linear

transformations - a linear transformation followed by a translation
(b term)



" J
Nonlinear (or is it?) example:

m [s this linear?
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m The function instantaneously jumps from being centered
about zero to being centered about 4! How can that be

linear? It’s NOT!!!



Why present this detail?

®m To drive home a few points
Linearity is a tricky thing to intuitively grasp
Linearity is subtle,and may not have been clearly defined
in earlier math classes

Many systems that appear nonlinear can be represented
by a linear system, but ALSO, many systems that appear
linear may also be in fact nonlinear when considered from
the right perspective

Just remember that test: additivity and homogeneity

f(mzy +nxe) ="mf(x) +nf(zs)

The study of spaces and transformations is useful and
broadening to the mind - sometimes thinking in a different
type of space allows one to solve a problem



Nonlinear least squares

m What if the data isn’t linear?!?
m Still can be done with linear regression!

m We can fit a higher order polynomial which 1s nonlinear
in the independent variables but linear in the unknown
parameters, as shown above, right



Nonlinear least squares (ll)

m How do we do this?

First consider an nth degree polynomial
Y = ap + a1 + asx® + ...a,x"
m Nonlinear equation

m Linear in the parameters

We want to determine the a’s that make the curve
most closely pass through a set of data

We do this in the same way as before in matiab



Nonlinear least squares (lll)

m Consider that we have some data, as before:

x=[1 3 2]
y=[2 4 3.5]
plot(x,y,"*")

m And we want to fit an equation with a nonlinear
term:

y=mz+nz?+b

\




Nonlinear least squares (1V)

m How do we solve this? Well if we pre-compute x*2 for
our data, we have the following problem:

2 =m(1)+n(l) +b
4 =m(3)+n9)+b
3.5=m(2) + n(4) + b
m  Which we can write in matrix form:

2 =[111 [m
4 391 n
3.5] 241] b]

A=[111;391;241]
y=12;4;3.5]

m  Again we can solve this with:

mnb= Aly




"
Let’s plot our fit against our
data

m In order to do that we just create new x-data (so we have
information not only at the points we used for our fit), and plug it
into the equation we just found the parameters for

4 e

3

xp=0:.1:5; 2
yp=mnb(1)*xp+mnb(2)*xp.A2 + mnb(3);
plot(xp,yp,'g)




Taking it further...

m Let’s do this for a larger dataset:

x=0:6
y=x.A2 + 3*randn(1,length(x))
plot(x,y,'*")

A =[ x' ones(length(x),1)]

mb= A\y'
xp=0:.1:6
yp=mb(1)*xp +mb(2)

hold on
plot(xp,yp)
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Taking it further (ll)...

m Let’s try fitting a nonlinear polynomial:

A = [ x' x.A2' ones(length(x),1)] :“
mnb=A\y' 5

30
xp=0:.1:6 25
yp=mnb(1)*xp +mnb(2)*xp.A2+ mnb(3) 20

15
plot(xp,yp,'1') ‘0




Going yet further with the fit...

m Let’s try to fit 0
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A =[x'xA2' x.A3' x.AM4' x.AS5' ones(length(x),1)] 20
mnpqrb=A\y' 15

10

y=mx+nx”"2 +px"3 + qx* + rx"5+b

xp=0:.1:6 1 2 3 4
yp=mnpqrb(1)*xp +mnpqrb(2)*xp. 2+ mnpqrb(3)*xp.A3 +...
mnpqrb(4)*xp. + mnpqrb(5)*xp.AS + mnpqrb(6)

plot(xp,yp,'k")



"
Overfitting...

m We refer to a fit such as the black
line as overfitting

You are no longer fitting the
system’s interrelationships, you are
fitting noise

More on this later

= But one easy technique for reducing
overfitting 1s to remove certain points
which appear to be deviating in a non-
systematic way, and test the fit again

m A nice application of machine learning

m Sometimes a model which is too
complex provides a worse model of
what 1s ocurring than a simpler
model for this reason
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