CogSci 109: Lecture 12

Wednesday Oct 31, 2007

Nonlinear least squares, definition of regression (linear vs. nonlinear regression), correlation and interpretation

Outline for today

■ Announcements
\square Homework 4 assigned late wed night, due Wed of next week
\square Midterm next Friday?

- Clarifications about linear equations vs. strict linearity

■ Linear regression
\square Introduction to nonlinear least squares
■ Correlation coefficient

Clarifications about linear

 equations vs. linear systems- Last time we referred to $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as a linear equation
\square A linear equation is commonly referred to as an equation whose curve is represented by a constant coefficient or a constant times a variable whose power is 1
\square Commonly represented as a 1st degree polynomial (with the highest order variable (the power of \mathbf{x}) is 1)
\square But...

Clarification about linear

equations vs. linear systems

- This is not the same as a linear function or linear map
- You may note that $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, if \mathbf{b} is nonzero, does not satisfy both tests for linearity $\left(\mathrm{f}\left(\mathrm{mx}_{1}+\mathrm{nx}_{2}\right)!=\mathrm{mf}\left(\mathrm{x}_{1}\right)+\mathrm{nf}\left(\mathrm{x}_{2}\right)\right)$
\square It is additive, but not homogeneous
\square It is commonly referred to as a linear equation because it defines a straight line in Cartesian coordinates
\square Must be differentiated from strict linearity
- This is referred to as an affine transformation (or affine map) when b is nonzero
- Affine transformations are more general than linear transformations - a linear transformation followed by a translation (b term)

Nonlinear (or is it?) example:

■ Is this linear?

- The function instantaneously jumps from being centered about zero to being centered about 4! How can that be linear? It's NOT!!!

Why present this detail?

- To drive home a few points
\square Linearity is a tricky thing to intuitively grasp
\square Linearity is subtle, and may not have been clearly defined in earlier math classes
\square Many systems that appear nonlinear can be represented by a linear system, but ALSO, many systems that appear linear may also be in fact nonlinear when considered from the right perspective
\square Just remember that test: additivity and homogeneity

$$
f\left(m x_{1}+n x_{2}\right)=? m f\left(x_{1}\right)+n f\left(x_{2}\right)
$$

\square The study of spaces and transformations is useful and broadening to the mind - sometimes thinking in a different type of space allows one to solve a problem

Nonlinear least squares

■ What if the data isn't linear?!?

- Still can be done with linear regression!

■ We can fit a higher order polynomial which is nonlinear in the independent variables but linear in the unknown parameters, as shown above, right

Nonlinear least squares (II)

■ How do we do this?
\square First consider an nth degree polynomial

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n} x^{n}
$$

- Nonlinear equation
- Linear in the parameters
\square We want to determine the a's that make the curve most closely pass through a set of data
\square We do this in the same way as before in matlab

Nonlinear least squares (III)

■ Consider that we have some data, as before:

$$
\begin{aligned}
& x=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right] \\
& y=\left[\begin{array}{lll}
2 & 4 & 3.5
\end{array}\right] \\
& \operatorname{plot}\left(x, y,,^{\prime}\right)
\end{aligned}
$$

- And we want to fit an equation with a nonlinear term:

$$
y=m x+n x^{2}+b
$$

Nonlinear least squares (IV)

■ How do we solve this? Well if we pre-compute $\mathrm{x}^{\wedge} 2$ for our data, we have the following problem:

$$
\begin{aligned}
& 2=\mathrm{m}(1)+\mathrm{n}(1)+\mathrm{b} \\
& 4=\mathrm{m}(3)+\mathrm{n}(9)+\mathrm{b} \\
& 3.5=\mathrm{m}(2)+\mathrm{n}(4)+\mathrm{b}
\end{aligned}
$$

- Which we can write in matrix form:

$$
\begin{array}{|lll}
{[2} & =\left[\begin{array}{ccc}
1111 & {[\mathrm{~m}} \\
4 & 391 & \mathrm{n} \\
3.5] & 241
\end{array}\right] & \mathrm{b}]
\end{array} \quad \begin{aligned}
& \mathrm{A}=\left[\begin{array}{llll}
1 & 1 & 1 ; 391 ; 241] \\
\mathrm{y}=\left[\begin{array}{ll}
2 ; & 4 ; 3.5
\end{array}\right] \\
\hline
\end{array}\right. \\
& \hline
\end{aligned}
$$

- Again we can solve this with:

$$
\mathrm{mnb}=\mathrm{Aly}
$$

Let's plot our fit against our data

- In order to do that we just create new x-data (so we have information not only at the points we used for our fit), and plug it into the equation we just found the parameters for

хр=0:.1:5;
$y p=m n b(1) * x p+m n b(2) * x p . \wedge 2+m n b(3)$; plot(xp,yp,'g')

Taking it further...

- Let's do this for a larger dataset:

$$
\begin{aligned}
& \mathrm{x}=0: 6 \\
& \mathrm{y}=\mathrm{x} . \wedge 2+3 * \operatorname{randn}(1, \text { length }(\mathrm{x})) \\
& \operatorname{plot}\left(\mathrm{x}, \mathrm{y},{ }^{\prime *}\right) \\
& \mathrm{A}=\left[\mathrm{x}^{\prime}\right. \text { ones(length(x),1)]} \\
& \mathrm{mb}=\mathrm{A} \backslash \mathrm{y}^{\prime} \\
& \mathrm{xp}=0: .1: 6 \\
& \mathrm{yp}=\mathrm{mb}(1)^{*} \mathrm{xp}+\mathrm{mb}(2) \\
& \text { hold on } \\
& \operatorname{plot}(\mathrm{xp}, \mathrm{yp})
\end{aligned}
$$

Taking it further (II)...

- Let's try fitting a nonlinear polynomial:
$\mathrm{A}=\left[\mathrm{x}^{\prime} \mathrm{x} . \wedge^{\wedge} 2^{\prime}\right.$ ones(length(x),1)] $\mathrm{mnb}=\mathrm{Aly}{ }^{\prime}$
xp=0:.1:6
$y p=m n b(1) * x p+m n b(2)^{*} x p . \wedge 2+\operatorname{mnb}(3)$
plot(xp,yp,'r')

Going yet further with the fit...

- Let's try to fit
$\mathrm{y}=\mathrm{mx}+\mathrm{n} \mathrm{x}^{\wedge} 2+\mathrm{p} \mathrm{x}^{\wedge} 3+\mathrm{q} \mathrm{x}^{\wedge} 4+\mathrm{r} \mathrm{x}^{\wedge} 5+\mathrm{b}$
$\mathrm{A}=\left[\mathrm{x}^{\prime} \mathrm{x} \cdot \wedge^{\wedge} 2^{\prime} \mathrm{x} .^{\wedge} 3^{\prime} \mathrm{x} . .^{\wedge} 4^{\prime} \mathrm{x} . .^{\wedge} 5^{\prime}\right.$ ones(length(x),1)] mnpqrb=Aly'
$\mathrm{xp}=0: .1: 6$

$y p=m n p q r b(1)^{*} x p+m n p q r b(2)^{*} x p . \wedge 2+\operatorname{mnpqrb}(3)^{*} x p . \wedge 3+\ldots$ $\operatorname{mnpqrb}(4) * x p . \wedge 4+\operatorname{mnpqrb}(5) * x p . \wedge 5+\operatorname{mnpqrb}(6)$
plot(xp,yp,'k')

Overfitting...

- We refer to a fit such as the black line as overfitting
\square You are no longer fitting the system's interrelationships, you are fitting noise
\square More on this later
- But one easy technique for reducing overfitting is to remove certain points which appear to be deviating in a nonsystematic way, and test the fit again
- A nice application of machine learning
- Sometimes a model which is too complex provides a worse model of what is ocurring than a simpler model for this reason

