CogSci 109: Lecture 12

Wednesday Oct 31, 2007 Nonlinear least squares, definition of regression (linear vs. nonlinear regression), correlation and interpretation

Outline for today

Announcements

- Homework 4 assigned late wed night, due Wed of next week
- Midterm next Friday?
- Clarifications about linear equations vs. strict linearity
- Linear regression
 - Introduction to nonlinear least squares
- Correlation coefficient

Clarifications about linear equations vs. linear systems

- Last time we referred to y=mx+b as a linear equation
 - A linear equation is commonly referred to as an equation whose curve is represented by a constant coefficient or a constant times a variable whose power is 1
 - Commonly represented as a 1st degree polynomial (with the highest order variable (the power of x) is 1)

But...

Clarification about linear equations vs. linear systems

- This is not the same as a **linear function** or **linear map**
- You may note that y=mx+b, if b is nonzero, does not satisfy both tests for linearity (f(mx₁+nx₂)!=mf(x₁)+nf(x₂))
 - It is additive, but not homogeneous
 - It is commonly referred to as a linear equation because it defines a straight line in Cartesian coordinates
 - Must be differentiated from strict linearity
 - This is referred to as an *affine transformation* (or *affine map*) when b is nonzero
 - Affine transformations are more general than linear transformations - a linear transformation followed by a translation (b term)

Nonlinear (or is it?) example:

Is this linear?

The function instantaneously jumps from being centered about zero to being centered about 4! How can that be linear? It's NOT!!!

Why present this detail?

To drive home a few points

- □ Linearity is a tricky thing to intuitively grasp
- Linearity is subtle, and may not have been clearly defined in earlier math classes
- Many systems that appear nonlinear can be represented by a linear system, but ALSO, many systems that appear linear may also be in fact *nonlinear* when considered from the right perspective
- Just remember that test: additivity and homogeneity

$$f(mx_1 + nx_2) = ?mf(x_1) + nf(x_2)$$

The study of spaces and transformations is useful and broadening to the mind - sometimes thinking in a different type of space allows one to solve a problem

Nonlinear least squares

- What if the data isn't linear?!?
- Still can be done with linear regression!

We can fit a higher order polynomial which is nonlinear in the independent variables but linear in the unknown parameters, as shown above, right

Nonlinear least squares (II)

How do we do this?

First consider an nth degree polynomial

$$y = a_0 + a_1 x + a_2 x^2 + \dots a_n x^n$$

Nonlinear equation

Linear in the parameters

- We want to determine the a's that make the curve most closely pass through a set of data
- We do this in the same way as before in matlab

Nonlinear least squares (III)

• Consider that we have some data, as before:

x=[1 3 2] y=[2 4 3.5] plot(x,y,'*')

And we want to fit an equation with a nonlinear term:

$$y = mx + nx^2 + b$$

Nonlinear least squares (IV)

How do we solve this? Well if we pre-compute x² for our data, we have the following problem:

$$2 = m(1) + n(1) + b$$

$$4 = m(3) + n(9) + b$$

$$3.5 = m(2) + n(4) + b$$

• Which we can write in matrix form:

 $\begin{bmatrix} 2 &= [1 1 1 1 \ m \\ 4 & 3 9 1 \ n \\ 3.5 \end{bmatrix} \begin{bmatrix} 2 4 1 \ b \end{bmatrix}$

A=[1 1 1; 3 9 1; 2 4 1] y=[2;4;3.5]

Again we can solve this with:

$$mnb = A y$$

Let's plot our fit against our data

In order to do that we just create new x-data (so we have information not only at the points we used for our fit), and plug it into the equation we just found the parameters for

Taking it further...

• Let's do this for a larger dataset:

x=0:6 y=x.^2 + 3*randn(1,length(x)) plot(x,y,'*')

$$A = [x' ones(length(x), 1)]$$

mb = A y'

xp=0:.1:6 yp=mb(1)*xp +mb(2)

hold on plot(xp,yp)

Taking it further (II)...

1. ···

Going yet further with the fit...

yp=mnpqrb(1)*xp +mnpqrb(2)*xp.^2+ mnpqrb(3)*xp.^3 +... mnpqrb(4)*xp.^4 + mnpqrb(5)*xp.^5 + mnpqrb(6)

plot(xp,yp,'k')

Overfitting...

• We refer to a fit such as the black line as **overfitting**

You are no longer fitting the system's interrelationships, you are fitting noise

More on this later

- But one easy technique for reducing overfitting is to remove certain points which appear to be deviating in a nonsystematic way, and test the fit again
- A nice application of machine learning
- Sometimes a model which is too complex provides a worse model of what is ocurring than a simpler model for this reason

