
CogSci 109: Lecture 11

Monday Oct 29, 2007
Return to classes - changes in the

course plan, basic fits - regression,
linear least squares



Outline for today

 Announcements
 Addressing the devastating fires

 How is our plan changing?
 How is our plan staying the same?

 Outline for today
 Reminder custom colormap demo

 Basic data fits

 Least squares minimization
 Linear models and regression

 Introduction

 Examples

 Matlab implementation



Announcements

 Wildfires  in San Diego
 Hw 3 due date is today, but it was going to be due

Monday of last week, so you should at least have
been mostly done
 If you have special needs in terms of time, come

speak with me after class or in office hours

 If you are considering dropping, please discuss it
with me first

 Reading for least squares and other fits



Update: the big picture
 Where we are

 4 parts of the course

 We discussed data
 What is it, how do we manipulate it, matlab

implementation

 Filtering

 Computing basic statistics

 We discussed basic visualization
 Plotting data (2d, 3d, colormaps)



Update: the big picture (II)

 Where we’re going
 We will now cover

 Modeling

 what is modeling?

 Error analysis

 How good is your model?



Update: the big picture (III)
 Where we’re going (continued)

 What we’re going to cover

 Basic models
 Linear fits, nonlinear fits

 Regression

 Relationship to machine learning

 Interpolation/extrapolation (also data analysis methods)

 Advanced models and modeling methods
 Fitting models with optimization methods

 Artificial neural networks

 AI

 Communicating results
 This has been integrated and will continue to be integrated

 Proper forms of inserting figures and tables in scientific
communications

 Format in homeworks is designed to teach proper communication
methodology



Creating color maps - review
and expansion
 What if I want to examine the boundaries of my

data?
 I only want to see the extremes

 We can create a custom color map!



Creating the color map (r,g,b)
components
 To create a custom color map we need to make a matrix

which is Dim nx3, range [0,1]
 Each column is the range of either red, green, blue
 Writing it by hand:

 Typing it into a matlab variable:
M = [1 0 0; 0 0 0; 0 0 0; 0 0 0; 0 1 0];
€ 

M =

0 1 0
0 0 0
0 0 0
0 0 0
1 0 0

 
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 
 
 
 
 
 

 

 

 
 
 
 
 
 



Now what?

 We create our plot, let’s create some data:
         X = peaks(50);

 And plot it using pcolor:

        pcolor(X)

        colormap(M)



Here’s what we get…

 As you can see this
can be very useful for
feature detection

 But let’s say we want
to make a smooth map,
how do we do that?



Creating smooth color map
functions
 Instead of typing the matrix in manually, let’s construct

the functions we need to make transitions smooth from
one color to the next

 Create many values in between 0 and 1
 Two things of note

 The length of your colormap array is up to you, the more
numbers and the smaller the transitions, the more smooth
the colors look (crayons vs. airbrushing)

 The colors are mapped so the

           range(0,1) -> range( min(data), max(data) )



Looking at smooth transitions

 Comparison after matching
the number of values in the
simple color variation (1 ->
0) vs. a smooth function
from 1->0

 Uses the equation…
 (for Decreasing:)

€ 

r = exp(−x)
x = 0 : .01:10 Index #



The final smooth color map
 And equations:

 Decreasing:

 Increasing:
€ 

r = exp(−x)
x = 0 : .01:10

€ 

g =
exp(x)

max exp(x)[ ]
x = 0 : .01:10



Results of our custom color
map

<- Using the built-in ‘hot’ color map

Using our color map->



Other plots vs. custom color
maps
 Grayscale?

 Compressed?



Matlab implementation…

 To matlab…



Part III: Models and the
modeling process



Linear least squares

 You're probably all familiar with linear regression
-- fitting a line to a bunch of data.

 more formally fitting y = mx + b for paired x,y
data (can also do multidimensional)

 Let’s see how it’s done mathematically



Let’s start by considering an
easier question…
 We have 2 points, and want to fit a line to them

 (1,2) ,  (3,4)

 How would you solve this problem?

 We want y=mx+b (we need m and b)
 Substitute each point in

€ 

2 =  m(1) +  b
4 =  m(3) +  b



Example continued

 And solve for b first, then m

€ 

b =  2 - m

4 =  3m +  2 - m
4 =  2m +2

€ 

m =1

b = 2 -m
b =1



Example continued

 We have two equations and two unknowns (m, b)

 This can be written compactly as

 Which is of the basic form

 We want to find

€ 

1 1
3 1
 

 
 

 

 
 
m
b

 
 
 

 
 
 

=
2
4
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 

 
 
 

€ 

Ax = b

€ 

x = A−1b



Solving Ax=b

 Solving for                   involves computing the inverse of the A
matrix
 Insiwhatsitz? Don’t worry…inverses are a way to make life easier

 There are several methods, and you can solve for arbitrarily sized
problems (ie what if we want to find 100 variables? Not fun by
hand:(  Let’s use a computer to do it for us!!!:)
 Gaussian elimination (what you learned in linear algebra class)

 Don’t worry you won’t have to do it by hand in this class!

 Thomas algorithm, etc (and other more efficient methods
computationally)

 Matlab has gaussian elimination built-in nicely of course

€ 

x = A−1b



We need to remind ourselves
of matrix inversion
 What is an inverse of a matrix?
 Rotation example

 If a vector is rotated by multiplying it by a rotation matrix, then
multiplying the rotated vector by the inverse rotates the vector back
to its original orientation

 Side note - a matrix times its inverse yields the identity matrix

 You can test for a matrix being the inverse of another matrix by multiplying
the two, and see how close do you get to the identity matrix?

 Look up more of the definition details…see references on site

 Homework problem, one matrix plot is an example…which could it be?
Hmm…what special matrices have we just mentioned?  Hmmm…how could I
IDENTIFY this matrix?  Hmmm…

 Dating example€ 

AA−1 = I

€ 

A−1A = I

€ 

AI = A

€ 

IA = A



Solving Ax=b

 We compute the solution of our canonical
problem by

Recall
that…



How to solve Ax=b in matlab

 In matlab this can be solved for with the \ operator
 A\B is the matrix division of B into A

 roughly the same as INV(A)*B

 computed in a different way.

 If A is an N-by-N matrix and B is a column vector with N
components, or a matrix with several such columns, then X = A\B
is the solution to the equation A*X = B computed by Gaussian
elimination.

 Doing it in matlab:

    mb= [1 1; 3 1]\[2;4];    %(left matrix divide)



Derivation of linear least
squares
 <on board>



Another example in matlab

 consider (1,2) (3,4)  (2, 3.5)
x=[1 3 2]
y=[2 4 3.5]
plot(x,y,'*')

 1m +b =2
 3m +b =4

 2m +b = 3.5



Example continued

A=[1 1; 3 1; 2 1]
y= [ 2; 4; 3.5]

 if we use the m=1, b=1 solution to the first two it doesn't
fit the third

 e.g. 3 equations and 2 unknowns
 This is what is known as an overconstrained problem.

People commonly like to find the solution that minimizes
the mean square error



Example continued

 This means we want to find the solution that
minimizes
\sum_{(x,y) pairs}  (y-mx-b)^2

 Matlab again solves this with
mb=A\y
hold on
newA=[0 1; 5 1]
plot([0 5],newA*mb)


