
CogSci 109: Lecture 11

Monday Oct 29, 2007
Return to classes - changes in the

course plan, basic fits - regression,
linear least squares

Outline for today

 Announcements
 Addressing the devastating fires

 How is our plan changing?
 How is our plan staying the same?

 Outline for today
 Reminder custom colormap demo

 Basic data fits

 Least squares minimization
 Linear models and regression

 Introduction

 Examples

 Matlab implementation

Announcements

 Wildfires in San Diego
 Hw 3 due date is today, but it was going to be due

Monday of last week, so you should at least have
been mostly done
 If you have special needs in terms of time, come

speak with me after class or in office hours

 If you are considering dropping, please discuss it
with me first

 Reading for least squares and other fits

Update: the big picture
 Where we are

 4 parts of the course

 We discussed data
 What is it, how do we manipulate it, matlab

implementation

 Filtering

 Computing basic statistics

 We discussed basic visualization
 Plotting data (2d, 3d, colormaps)

Update: the big picture (II)

 Where we’re going
 We will now cover

 Modeling

 what is modeling?

 Error analysis

 How good is your model?

Update: the big picture (III)
 Where we’re going (continued)

 What we’re going to cover

 Basic models
 Linear fits, nonlinear fits

 Regression

 Relationship to machine learning

 Interpolation/extrapolation (also data analysis methods)

 Advanced models and modeling methods
 Fitting models with optimization methods

 Artificial neural networks

 AI

 Communicating results
 This has been integrated and will continue to be integrated

 Proper forms of inserting figures and tables in scientific
communications

 Format in homeworks is designed to teach proper communication
methodology

Creating color maps - review
and expansion
 What if I want to examine the boundaries of my

data?
 I only want to see the extremes

 We can create a custom color map!

Creating the color map (r,g,b)
components
 To create a custom color map we need to make a matrix

which is Dim nx3, range [0,1]
 Each column is the range of either red, green, blue
 Writing it by hand:

 Typing it into a matlab variable:
M = [1 0 0; 0 0 0; 0 0 0; 0 0 0; 0 1 0];
€

M =

0 1 0
0 0 0
0 0 0
0 0 0
1 0 0

Now what?

 We create our plot, let’s create some data:
 X = peaks(50);

 And plot it using pcolor:

 pcolor(X)

 colormap(M)

Here’s what we get…

 As you can see this
can be very useful for
feature detection

 But let’s say we want
to make a smooth map,
how do we do that?

Creating smooth color map
functions
 Instead of typing the matrix in manually, let’s construct

the functions we need to make transitions smooth from
one color to the next

 Create many values in between 0 and 1
 Two things of note

 The length of your colormap array is up to you, the more
numbers and the smaller the transitions, the more smooth
the colors look (crayons vs. airbrushing)

 The colors are mapped so the

 range(0,1) -> range(min(data), max(data))

Looking at smooth transitions

 Comparison after matching
the number of values in the
simple color variation (1 ->
0) vs. a smooth function
from 1->0

 Uses the equation…
 (for Decreasing:)

€

r = exp(−x)
x = 0 : .01:10 Index #

The final smooth color map
 And equations:

 Decreasing:

 Increasing:
€

r = exp(−x)
x = 0 : .01:10

€

g =
exp(x)

max exp(x)[]
x = 0 : .01:10

Results of our custom color
map

<- Using the built-in ‘hot’ color map

Using our color map->

Other plots vs. custom color
maps
 Grayscale?

 Compressed?

Matlab implementation…

 To matlab…

Part III: Models and the
modeling process

Linear least squares

 You're probably all familiar with linear regression
-- fitting a line to a bunch of data.

 more formally fitting y = mx + b for paired x,y
data (can also do multidimensional)

 Let’s see how it’s done mathematically

Let’s start by considering an
easier question…
 We have 2 points, and want to fit a line to them

 (1,2) , (3,4)

 How would you solve this problem?

 We want y=mx+b (we need m and b)
 Substitute each point in

€

2 = m(1) + b
4 = m(3) + b

Example continued

 And solve for b first, then m

€

b = 2 - m

4 = 3m + 2 - m
4 = 2m +2

€

m =1

b = 2 -m
b =1

Example continued

 We have two equations and two unknowns (m, b)

 This can be written compactly as

 Which is of the basic form

 We want to find

€

1 1
3 1

m
b

=
2
4

€

Ax = b

€

x = A−1b

Solving Ax=b

 Solving for involves computing the inverse of the A
matrix
 Insiwhatsitz? Don’t worry…inverses are a way to make life easier

 There are several methods, and you can solve for arbitrarily sized
problems (ie what if we want to find 100 variables? Not fun by
hand:(Let’s use a computer to do it for us!!!:)
 Gaussian elimination (what you learned in linear algebra class)

 Don’t worry you won’t have to do it by hand in this class!

 Thomas algorithm, etc (and other more efficient methods
computationally)

 Matlab has gaussian elimination built-in nicely of course

€

x = A−1b

We need to remind ourselves
of matrix inversion
 What is an inverse of a matrix?
 Rotation example

 If a vector is rotated by multiplying it by a rotation matrix, then
multiplying the rotated vector by the inverse rotates the vector back
to its original orientation

 Side note - a matrix times its inverse yields the identity matrix

 You can test for a matrix being the inverse of another matrix by multiplying
the two, and see how close do you get to the identity matrix?

 Look up more of the definition details…see references on site

 Homework problem, one matrix plot is an example…which could it be?
Hmm…what special matrices have we just mentioned? Hmmm…how could I
IDENTIFY this matrix? Hmmm…

 Dating example€

AA−1 = I

€

A−1A = I

€

AI = A

€

IA = A

Solving Ax=b

 We compute the solution of our canonical
problem by

Recall
that…

How to solve Ax=b in matlab

 In matlab this can be solved for with the \ operator
 A\B is the matrix division of B into A

 roughly the same as INV(A)*B

 computed in a different way.

 If A is an N-by-N matrix and B is a column vector with N
components, or a matrix with several such columns, then X = A\B
is the solution to the equation A*X = B computed by Gaussian
elimination.

 Doing it in matlab:

 mb= [1 1; 3 1]\[2;4]; %(left matrix divide)

Derivation of linear least
squares
 <on board>

Another example in matlab

 consider (1,2) (3,4) (2, 3.5)
x=[1 3 2]
y=[2 4 3.5]
plot(x,y,'*')

 1m +b =2
 3m +b =4

 2m +b = 3.5

Example continued

A=[1 1; 3 1; 2 1]
y= [2; 4; 3.5]

 if we use the m=1, b=1 solution to the first two it doesn't
fit the third

 e.g. 3 equations and 2 unknowns
 This is what is known as an overconstrained problem.

People commonly like to find the solution that minimizes
the mean square error

Example continued

 This means we want to find the solution that
minimizes
\sum_{(x,y) pairs} (y-mx-b)^2

 Matlab again solves this with
mb=A\y
hold on
newA=[0 1; 5 1]
plot([0 5],newA*mb)

