CogSci 109: Lecture 11

Monday Oct 29, 2007

Return to classes - changes in the course plan, basic fits - regression, linear least squares

Outline for today

■ Announcements
\square Addressing the devastating fires

- How is our plan changing?
- How is our plan staying the same?
- Outline for today
\square Reminder custom colormap demo
\square Basic data fits
- Least squares minimization
- Linear models and regression
\square Introduction
\square Examples
\square Matlab implementation

Announcements

- Wildfires in San Diego
- Hw 3 due date is today, but it was going to be due Monday of last week, so you should at least have been mostly done
\square If you have special needs in terms of time, come speak with me after class or in office hours
\square If you are considering dropping, please discuss it with me first
- Reading for least squares and other fits

Update: the big picture

- Where we are
$\square 4$ parts of the course
- We discussed data
\square What is it, how do we manipulate it, matlab implementation
\square Filtering
\square Computing basic statistics
- We discussed basic visualization
\square Plotting data (2d, 3d, colormaps)

Update: the big picture (II)

- Where we're going
- We will now cover

Modeling

- what is modeling?

Error analysis

- How good is your model?

Update: the big picture (III)

- Where we're going (continued)
\square What we're going to cover
- Basic models
\square Linear fits, nonlinear fits
\square Regression
\square Relationship to machine learning
\square Interpolation/extrapolation (also data analysis methods)
- Advanced models and modeling methods
\square Fitting models with optimization methods
\square Artificial neural networks
\square AI
- Communicating results
\square This has been integrated and will continue to be integrated
\square Proper forms of inserting figures and tables in scientific communications
\square Format in homeworks is designed to teach proper communication methodology

Creating color maps - review and expansion

- What if I want to examine the boundaries of my data?
\square I only want to see the extremes
\square We can create a custom color map!

Creating the color map ($\mathbf{r}, \mathrm{g}, \mathrm{b}$) components

- To create a custom color map we need to make a matrix which is Dim nx3, range [0,1]
- Each column is the range of either red, green, blue
- Writing it by hand:

$$
M=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

- Typing it into a matlab variable:

$$
M=\left[\begin{array}{ccccc}
1 & 0 & 0 ; 0 & 0 & 0 \\
0 & 0 & 0 ; 0 & 0 & 0 ; \\
0 & 1 & 0
\end{array}\right]
$$

Now what?

- We create our plot, let's create some data: X = peaks(50);
- And plot it using pcolor: pcolor(X) colormap(M)

Here's what we get...

- As you can see this can be very useful for feature detection
■ But let's say we want to make a smooth map, how do we do that?

Creating smooth color map

functions

■ Instead of typing the matrix in manually, let's construct the functions we need to make transitions smooth from one color to the next

- Create many values in between 0 and 1
- Two things of note
\square The length of your colormap array is up to you, the more numbers and the smaller the transitions, the more smooth the colors look (crayons vs. airbrushing)
\square The colors are mapped so the range(0,1) -> range(min(data), max(data))

Looking at smooth transitions

- Comparison after matching the number of values in the simple color variation (1-> 0) vs. a smooth function from 1->0
- Uses the equation...
\square (for Decreasing:)

$$
\begin{aligned}
& r=\exp (-x) \\
& x=0: .01: 10
\end{aligned}
$$

The final smooth color map

- And equations:

Decreasing:
$r=\exp (-x)$
$x=0: .01: 10$

Increasing:
$g=\frac{\exp (x)}{\max [\exp (x)]}$
$x=0: .01: 10$

Results of our custom color

map

Other plots vs. custom color

maps

- Grayscale?

■ Compressed?

Matlab implementation...

■ To matlab...

Part III: Models and the modeling process

Linear least squares

- You're probably all familiar with linear regression -- fitting a line to a bunch of data.
- more formally fitting $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$ for paired x, y data (can also do multidimensional)
- Let's see how it's done mathematically

Let's start by considering an easier question...

■ We have 2 points, and want to fit a line to them

- $(1,2),(3,4)$

■ How would you solve this problem?

- We want $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ (we need \mathbf{m} and \mathbf{b})
\square Substitute each point in

$$
\begin{aligned}
& 2=\mathrm{m}(1)+\mathrm{b} \\
& 4=\mathrm{m}(3)+\mathrm{b}
\end{aligned}
$$

Example continued

- And solve for \mathbf{b} first, then \mathbf{m}
$\mathrm{b}=2-\mathrm{m}$
$4=3 \mathrm{~m}+2-\mathrm{m}$
$4=2 \mathrm{~m}+2$
$\mathrm{~m}=1$
$\mathrm{~b}=2-\mathrm{m}$
$\mathrm{b}=1$

Example continued

■ We have two equations and two unknowns (m, b)

- This can be written compactly as

$$
\left[\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right\}=\left\{\begin{array}{l}
2 \\
4
\end{array}\right\}
$$

- Which is of the basic form

$$
A x=b
$$

- We want to find

$$
x=A^{-1} b
$$

Solving Ax=b

- Solving for $x=A^{-1} b$ involves computing the inverse of the A matrix
\square Insiwhatsitz? Don't worry...inverses are a way to make life easier
- There are several methods, and you can solve for arbitrarily sized problems (ie what if we want to find 100 variables? Not fun by hand:(Let's use a computer to do it for us!!!:)
\square Gaussian elimination (what you learned in linear algebra class)
- Don't worry you won't have to do it by hand in this class!
\square Thomas algorithm, etc (and other more efficient methods computationally)
\square Matlab has gaussian elimination built-in nicely of course

We need to remind ourselves of matrix inversion

- What is an inverse of a matrix?
- Rotation example
\square If a vector is rotated by multiplying it by a rotation matrix, then multiplying the rotated vector by the inverse rotates the vector back to its original orientation
\square Side note - a matrix times its inverse yields the identity matrix
- You can test for a matrix being the inverse of another matrix by multiplying the two, and see how close do you get to the identity matrix?

$$
\begin{aligned}
& A A^{-1}=I \\
& \text { Look up more of the definition details...see references on site }
\end{aligned}
$$

- Homework problem, one matrix plot is an example...which could it be? Hmm... what special matrices have we just mentioned? Hmmm...how could I IDENTIFY this matrix? Hmmm...
- Dating example

Solving Ax=b

■ We compute the solution of our canonical problem by

	$\begin{array}{r} \text { Recall } \\ \text { that... } \end{array}$	$A x=b$
$A^{-1} A=I$		$A^{-1} A x=A^{-1} b$
$I x=x$		$I x=A^{-1} b$
		$x=A^{-1} b$

How to solve $\mathbf{A x}=b$ in matlab

- In matlab this can be solved for with the \backslash operator
- $\mathrm{A} \backslash \mathrm{B}$ is the matrix division of B into A
\square roughly the same as INV(A)*B
\square computed in a different way.
- If A is an N -by- N matrix and B is a column vector with N components, or a matrix with several such columns, then $X=A \backslash B$ is the solution to the equation $\mathrm{A} * \mathrm{X}=\mathrm{B}$ computed by Gaussian elimination.
- Doing it in matlab:

$$
m b=[11 ; 31] \backslash[2 ; 4] ; \quad \%(\text { left matrix divide })
$$

Derivation of linear least

squares

- <on board>

Another example in matlab

- consider $(1,2)(3,4)(2,3.5)$
$\mathrm{x}=\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]$
$y=\left[\begin{array}{lll}2 & 4 & 3.5\end{array}\right]$
plot(x,y,'*')
- $1 \mathrm{~m}+\mathrm{b}=2$
- $3 \mathrm{~m}+\mathrm{b}=4$
- $2 \mathrm{~m}+\mathrm{b}=3.5$

Example continued

$$
\begin{aligned}
& A=[11 ; 31 ; 21] \\
& y=[2 ; 4 ; 3.5]
\end{aligned}
$$

- if we use the $m=1, b=1$ solution to the first two it doesn't fit the third
- e.g. 3 equations and 2 unknowns
- This is what is known as an overconstrained problem. People commonly like to find the solution that minimizes the mean square error

Example continued

- This means we want to find the solution that minimizes
Isum_\{(x,y) pairs\} (y-mx-b)^2
- Matlab again solves this with

```
mb=A\y
hold on
newA=[00 1; 5 1]
plot([0 5],newA*mb)
```

