Lecture 10 Cogsci 109

Fri. Oct. 19, 2007 Computing Basic Statistics II, variability

Outline for today

Announcements

- A few matlab tips
 - Ctrl-I
 - Close all

 - About 'loading data into a variable of your choosing'
- The concept of probability density functions (PDF) reviewed
 - The normal distribution is a PDF

Announcements

Reading

- Monday, more reading will be assigned
- Recordings will post first two weeks for those who added late

Matlab tips

- Ctrl-I
- Close all, close
- Clf
- Loading data into a variable of your choosing issue

Outline for today II

Measures of variability in terms of the normal distribution

Variance

Definition, properties, applications, how to compute in matlab

Standard deviation

 Definition, properties, applications, comparison to variance, computing in matlab

Covariance

 Definition, properties, applications, relationship to variance, computing in matlab

Z scores and normalizing to unit variance

- How to perform this normalization
- What are the applications and situations one might use this

Consider the following...

- Both signals have the same mean, but they are obviously different!
- One VARIES much more about the mean, can we create a quantitative measure of this?

We need a measure of Variability, here are a few...

- Range
 - From math review, difference between max and min values of the data

$$Range(x) = Max(x) - Min(x)$$

- Variance
 - Mean of squared deviations from the mean
 - In square units of the sample variable
- Standard deviation
 - Square root of variance
 - □ In units of the sample variable sometimes easier to interpret

Returning to the normal distribution...and considering our data in terms of a

histogram...

- The distribution of points about the mean can be considered in terms of probabilities
- How likely is a point to deviate from the mean?
- We call the normal distribution a *probability density function (PDF)* because it allows us to predict the likelihood that a sample will take on a particular value

Histogram of noisy data from previous slide

Variance

- Whereas the mean defines a measure for the most likely point in state space (the center 'location' of a normal distribution)
- We can define the spread of the normal distribution about the mean by its *variance*

Variance (part II)

- Steps to compute the variance
 - Compute the deviations from the mean for all the data

$$d_i = \left(x_i - \overline{x}\right)$$

Compute the square of each of the deviations

$$sd_i = \left(d_i\right)^2$$

□ Sum up all these squared deviations

$$ssqd = \sum_{i=1}^{N} (sd_i)$$

Divide the mean squared deviations by N, the number of observations

$$Var = \frac{ssqd}{N}$$

How to compute the variance in matlab

- Function var()
- Example
- Matlab help: *help var*

Standard Deviation

- Typical 'deviation' from the mean
- Ie how far on average scores depart on either side from the mean
- Easy to compute after the variance just take the square root of the variance

$$SD = \sqrt{Var} = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N}}$$
$$\overline{x} = \frac{\sum x_i}{N}$$

How to compute the standard deviation in matlab

- Function std()
- Example
- Matlab help: help std

Z scores

- A Z score is simply a measure of how many standard deviations away from the mean a score is
- Units are standard deviations

$$Z_i = \frac{X_i - \mu}{SD}$$

Covariance

- Covariance is very commonly used in statistical analysis as the basis for advanced statistics
- Gives a quantitative measure of the relationship between two variables

$$Cov(X,Y) = E\left[\left(X - \mu_x\right)\left(Y - \mu_y\right)^T\right]$$

$$E = expectation$$

$$\mu = mean$$

More Covariance

■ If the two variables are independent, the covariance is 0

(BUT IF COVARIANCE IS 0 THAT DOESN'T MEAN THE VARIABLES ARE INDEPENDENT!!!)

 If they are totally dependent the covariance of data, can be arbitrarily large

□ (AGAIN THE CONVERSE IS NOT NECESSARILY TRUE)

- The diagonals are the variance of each variable
- If each row is an observation, and each column a variable...

$$\operatorname{cov}(X) = \left(\frac{1}{N-1}\right) (X - mean(X)) (X - mean(X))^{T}$$

Matlab does it easily with

- Function: cov(X) where X is a matrix with rows being observations, columns being variables
- cov(X) where X is a vector yields the variance (a single scalar number)

As an aside: be careful about 'sample' vs. 'population' measures

- You can't usually measure every possible subject or situation
 - Can you measure the height of every SINGLE individual in the United States?
 - Theoretically yes but it would take too long and too many resources
 - Measure a representative group which is large enough to minimize the bias due to the fact that it is only a portion of the total possible measurements you could make
 - Can make some mathematical adjustments
 - We won't deal with this too much, since you learned about this in statistics, but you should know about the implications of each type of measure
- Matlab uses different equations to compute these statistics depending on you, but it has defaults of typically estimating populations

Trace

 Sum of the variances (the sum of the elements of the diagonal of the covariance matrix)