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A person learning to control a complex system needs to learn about both the dynamics and the noise of the system. We evaluated human
subjects’ abilities to learn to control a stochastic dynamic system under different noise conditions. These conditions were created by
corrupting the forces applied to the system with noise whose magnitudes were either proportional or inversely proportional to the sizes
of subjects’ control signals. We also used dynamic programming to calculate the mathematically optimal control laws of an “ideal actor”
for each noise condition. The results suggest that people learned control strategies tailored to the specific noise characteristics of their
training conditions. In particular, as predicted by the ideal actors, they learned to use smaller control signals when forces were corrupted
by proportional noise and to use larger signals when forces were corrupted by inversely proportional noise, thereby achieving levels of perfor-
mance near the information-theoretic upper bounds. We conclude that subjects learned to behave in a near-optimal manner, meaning that they
learned to efficiently use all available information to plan and execute control policies that maximized performances on their tasks.

Key words: visuomotor control; motor learning; human; performance; movement; ideal actor analysis

Introduction
A person learning to control a complex system needs to learn

about both the dynamics and the noise of the system (Shadmehr
and Mussa-Ivaldi, 1994; Wolpert et al., 1995; Baddeley et al.,
2003). When learning about the dynamics, the person learns
about the relationships between control signals and the expected
responses to these signals (Miall and Wolpert, 1996; Flanagan
and Wing, 1997; Johansson, 1998; Desmurget and Grafton,
2000). A person learning to hit a hockey puck toward a teammate,
for example, learns about the mapping from the state of their
body and the commands sent to their muscles to the expected
trajectory of the puck. In contrast, when learning about the noise,
the person learns about the relationships between control signals
and the expected variances in the responses to these signals (Wol-
pert et al., 1995; Baddeley et al., 2003). For example, a hockey
player may learn that large muscle commands lead to a distribu-
tion of puck trajectories with a large variance, whereas small com-
mands lead to a distribution with a small variance.

An approach to the study of human adaptive control that has
recently yielded novel insights is to compare human perfor-
mances with the mathematically optimal performances of “ideal
actors” (Busemeyer, 2002; Jagacinski and Flach, 2003; Todorov,
2004). A motivation for this approach can be found in the work of
Marr (1982). Marr defined three levels of analysis of an informa-
tion processing device. The top level, known as the computa-
tional theory, examines what the device does and why. A distin-
guishing feature of this level is that it provides an explanation for

why a device does what it does by studying the goals of the device.
An important property of research that uses ideal actors is that
this research formalizes goals as mathematical constraints or cri-
teria, searches for behaviors that optimize the criteria, and com-
pares the optimal behaviors with human behaviors. If there is a
close match, then it is hypothesized that people are behaving as
they do because they are efficiently satisfying the same goals as
were built into the ideal actor.

This article reports research using ideal actors to study peo-
ple’s abilities to learn to control a dynamic system in an optimal
manner. Different groups of subjects learned to control a system
under different noise conditions. The comparisons of subjects’
performances with the performances of the ideal actors for each
condition provided at least two advantages. First, because opti-
mal performances depended on the dynamics of the system as
well as its noise, people needed to learn about both the dynamics
and the noise to behave optimally. If subjects did indeed behave
optimally, then we can conclude that they learned to efficiently
use all available information to plan and execute control policies
that maximized performance on the experimental task. Second,
the comparisons of subjects’ performances with the ideal actors’
performances allowed us to understand subjects’ behaviors in a
more quantitative and mathematically rigorous manner than
would otherwise have been the case.

Materials and Methods
Subjects. Subjects were students at the University of Rochester with nor-
mal or corrected-to-normal vision and with normal motor abilities. Sub-
jects were naive to the purposes of the study.

Stimuli and procedures. Our experiments required subjects to control a
simulated device using a computer mouse. Experiments requiring sub-
jects to control simulated dynamical systems via human– computer in-
terfaces are increasingly widespread in the literature because they allow
researchers to easily and precisely control the properties of the dynamical
systems (Foulkes and Miall, 2000; Robles-de-la-Torre and Sekuler, 2004;
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Krakauer et al., 2005). For our purposes, the use of simulated dynamic
systems controlled through a human– computer interface provided two
advantages: because of the flexibility of simulation, it allowed us to easily
test subjects in a variety of noise conditions, and it allowed us to constrain the
experimental environment so that we could construct mathematical models
known as ideal actors that performed the same tasks as human subjects.

The experimental task was to use the computer mouse to apply forces
to a simulated object so that it spends as much time as possible in a target
region. The object was constrained to move along a horizontal line. The
object can be characterized as a second-order dynamical system: mẍ !
f " bẋ, where x, ẋ, and ẍ are the position, velocity, and acceleration,
respectively, of the object, m is its mass, b is its viscous resistance, and f is
the force applied to the object. In our simulations, we set m ! 10 units
and b ! 5 force units second/spatial unit (in which the spatial units of the
workspace ranged from "50 to 50). Subjects selected control signals by
setting the horizontal position of the computer mouse. This position was
sampled at a rate of 30 Hz. The visual display (subtending #40° of visual
angle in the horizontal dimension) provided the current position of the
object, the current value of the control signal, and the position of the
target region (Fig. 1). The position of the object was given by the position
of the rightmost edge of a black horizontal bar (the leftmost edge of the
bar was always adjacent to the leftmost edge of the workspace). The value
of the control signal was given by a red horizontal bar in which the bar
extended to the left or right of the center of the workspace to indicate the
sign of the signal (either negative or positive), and the length of the bar
indicated the magnitude of the signal. The target region was denoted by a
gray vertical bar (this region subtended #1.6° of visual angle in the
horizontal dimension). Subjects sat #50 cm from the computer monitor
and viewed the monitor at a comfortable angle.

Each trial lasted 10 s, and subjects performed 180 trials during a 1 h
experimental session. At the start of each trial, the positions of the object
and target regions were set to random values such that the target region
was to the right of the object. If the horizontal dimension of the work-
space had coordinates between "50 and 50, then the initial location of
the object was sampled from a uniform distribution between "36 and
"13, and the center of the reward region was sampled from a uniform
distribution between 0 and 23. At the end of each trial, subjects received
feedback in the form of a score equal to the percentage of time during the
trial that the object was in the target region.

The experiment included three experimental conditions. In the no-noise
(NN) condition, the force applied to the object was a deterministic linear
function of the horizontal position of the computer mouse. If the horizontal
dimension of the workspace had coordinates between "50 and 50, then the
mouse position r was an integer in this range, and the subject’s control signal
u(r) was set to 15 $ r. In the NN condition, the force was set to the control
signal: f ! u(r). In the proportional-noise (PN) condition, the force was a
stochastic function of the control signal: f ! u(r) % !, where the noise ! was
sampled from a normal distribution whose mean was 0 and whose SD was
proportional to the control signal [SD ! k $ u(r) , where k ! 1.5]. Last, the
inversely proportional-noise (IPN) condition was identical to the PN con-
dition, with the exception that the SD of the noise was inversely proportional
to the control signal [SD ! k/ 15 0.75 if u(r) & 15, and SD ! k/ u(r) 0. 75 if
u(r) " 15, where k ! 1500].

The experimental task was relatively difficult for at least two reasons.
First, it required subjects to learn the dynamics governing the movement

of the object. This aspect of the task was challenging, particularly because
we set the viscous resistance to a small value. For example, because of the
small value of this resistance, the application of a positive force to the
object caused the object to move rightward even after this force had been set
to 0. Second, it required subjects to learn about the stochastic relationships
between subjects’ control signals and the forces applied to the object.

Design of the ideal actors. As mentioned above, it is often useful to
compare human performances on perceptual or motor tasks with the
performances of “ideal observers” or ideal actors (Barlow, 1957; Geisler,
1989; Baddeley et al., 2003; Todorov, 2004; Berthier et al., 2005). Because
these computational devices optimally use all available information
when performing a task, their performances serve as “gold standards”
against which human performances can be benchmarked.

We calculated the performances of ideal actors on our adaptive control
task. For every trial performed by every subject, we determined the opti-
mal feedback control law of an ideal actor. The ideal actor was provided
with knowledge of the dynamics of the object, the noise characteristics of
the environment, and the task requirements. It was also provided with
the same initial position of the object and location of the target region as
seen by a subject on a given trial. Using this information, the ideal actor
performed the same task as a subject, i.e., it searched for an optimal
control law. This law is useful because it provides an action for each state of a
system that maximizes the expected amount of time that the object spends in
the target region (Sutton and Barto, 1998; Engelbrecht et al., 2003; Robles-
de-la-Torre and Sekuler, 2004). We emphasize that the optimal control law
depends on the noise characteristics of the environment, meaning that dif-
ferent ideal actors were created for different noise conditions.

Mathematically, the experimental task can be formalized as a Markov
decision task whose optimal solutions were found via dynamic program-
ming (Bellman, 1957; Bertsekas and Tsitsiklis, 1996). To solve the opti-
mal control problem, we first discretized the continuous environment
into a discrete state and action space. The position of the object x was
discretized into 100 equally sized bins between "50 and 50. The velocity
of the object ẋ was discretized into 100 equally sized bins between "50
and 50. The control signal was already a discrete variable (bin size, 15). It
was constrained to be between "750 and 750.

We then transformed the optimal control problem to a Markov deci-
sion problem (MDP) on this discretized control space. The state space S
of the Markov decision problem is defined as S ! {s:s ! (x, ẋ)}, where x
and ẋ are bin centers as defined above. The action space A is the set
{"735, "720. . . 750}. The next-state distribution of the MDP [i.e., P (!!s,
a), s # S and a # A] depends on the dynamics given in the above equation
and the nature of the noise. Because the system is linear and because the
noise in all experimental conditions has a normal distribution, the next-
state distribution is also a normal distribution. The reward function for
the MDP was defined as R(st) ! 1 if x was in the target region at time t,
and R(st) ! 0 otherwise. Given the next-state distribution and the reward
function, the MDP can be formulated as a dynamic programming prob-
lem whose solution is a mapping from states to actions such that the
action chosen at each state maximizes the expected sum of rewards,
denoted E['t R(st)], where E[!] is the expectation operator, t is an index
over time steps, and the sum is taken over all time steps of a trial. Note
that we used dynamic programming to find globally optimal solutions to
the optimal control problem (as opposed to approximate solutions that
are typically found by methods from the machine learning literature,
such as reinforcement learning methods). In addition, a solution to the
optimal control problem is not unique (i.e., there are many control pol-
icies that maximize performance on the experimental task), and dynamic
programming can be used to find multiple solutions.

As discussed below, we found that subjects learned to perform nearly
as well as ideal actors in all experimental conditions. There are many
possible reasons why subjects did not perform exactly as well as the ideal
actors and, thus, did not achieve statistical efficiencies of 1. Some reasons
are relevant to subjects’ motor learning processes. For example, subjects
may have performed suboptimally because they learned imperfect inter-
nal models of the system they needed to control whereas an ideal actor
was provided with a perfect model of the system, or because subjects
inaccurately estimated the values of the state variables whereas an ideal
actor was provided with perfect state observations. Other reasons are not

Figure 1. Schematic of a visual display illustrating the current position of the object, the
current value of the control signal, and the position of the target region.
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relevant to subjects’ learning processes. For example, an ideal actor could
choose a novel control signal at each moment in time although subjects’
control signals were necessarily correlated at neighboring time steps, or
an ideal actor did not include temporal lags although subjects’ motor and
cognitive processing contained lags. For these reasons, our ideal actors
provided information-theoretic upper bounds on performances. De-
signing ideal actors that include motor, perceptual, and cognitive limita-
tions resembling those of people is an important area of future research.

Results
Figure 2a– c shows subjects’ efficiencies in the NN, PN, and IPN
conditions, respectively, in which efficiency is defined as the ratio
of a subject’s performance (the amount of time that the object
spent in the target region) to the expected performance of the
ideal actor (this expectation was taken with respect to the prob-
ability of the noise in the PN and IPN conditions and was com-
puted via Monte Carlo simulation). Seventeen of 18 subjects
showed significant learning during the course of the experimental
session (two-tailed t test, p & 0.03). In addition, subjects achieved
high statistical efficiencies in all conditions at the end of the session.

To evaluate whether subjects learned control strategies tai-
lored to the specific noise characteristics of each experimental
condition, we examined their average control signals (using the
magnitudes of these signals, not their signs) during the first 2 s
(mostly reflecting subjects’ planning or feedforward control pol-
icies) and last 2 s (mostly reflecting subjects’ feedback policies) of
each of the last 30 trials. The left side of Figure 2d shows that, on
average, subjects in the PN condition used significantly smaller
control signals during the first 2 s than subjects in the NN or IPN
conditions (based on a two- tailed t test, the difference between
the PN and IPN groups is statistically significant at p & 0.05
level). This result indicates that subjects in the PN condition
learned that large control signals lead to large amounts of noise
corrupting the forces applied to the object. Consequently, they
avoided large control signals. The right side of Figure 2d shows
that subjects in the IPN condition used significantly larger con-

trol signals during the last 2 s than subjects
in the NN or IPN conditions (based on a
two-tailed t test, the difference between the
PN and IPN groups is statistically signifi-
cant at the p & 0.01 level). This result sug-
gests that subjects in the IPN condition
learned that small control signals lead to
large amounts of noise and, thus, they
avoided small control signals.

We claim that subjects in the PN con-
dition learned to use smaller control sig-
nals and that subjects in the IPN condition
used larger signals, because subjects
learned control strategies that were tai-
lored to the specific noise characteristics of
their training conditions. An alternative
explanation that is a logical, albeit un-
likely, possibility is that subjects in the IPN
condition used larger control signals be-
cause they had larger errors. That is, sub-
jects in the IPN condition may have used
large control signals because the object was
often far from the target region. To evalu-
ate this possibility, we measured subjects’
average errors [the average difference be-
tween the position of the object and the
position of the nearest edge of the target
region (using magnitude only, not the sign of

the difference); this difference was set to 0 if the object was inside the
target region]. Contrary to the hypothesis being considered here,
subjects in the IPN condition actually had smaller errors than sub-
jects in the PN condition during the first 2 s of a trial (based on a
two-tailed t test, the difference between the two groups is statistically
significant at the p & 0.05 level). During the last 2 s of a trial, subjects
in the IPN condition again had smaller errors, although the differ-
ence between the two groups was not statistically significant. We
conclude that it is not the case that subjects in the IPN condition used
larger control signals because they had larger errors.

Figure 2e shows typical control strategies during the last 30
trials of randomly selected subjects in the NN, PN, and IPN con-
ditions. The subject in the NN condition learned to initially pro-
vide a large positive control signal, thereby accelerating the object
to the right toward the target region, followed by a large negative
control signal, thereby decelerating the object so that it came to
rest in or near the target region. This subject’s strategy can be
characterized as an approximation to what is known in the engi-
neering literature as a “bang– bang” control policy. The control
strategy of the subject in the PN condition is an approximation to
a bang– bang policy that has been smoothed to avoid control
signals with large magnitudes. Because large control signals lead to
large amounts of noise corrupting the forces applied to the object, it
makes sense that the subject chose to avoid large signals. The strategy
of the subject in the IPN condition can also be characterized as a
bang–bang policy, but it differs from that of the subject in the NN
condition in that the control signals toward the end of the trial dif-
fered significantly from 0 although the object is in or near the target
region. It seems that the subject learned that small signals lead to
large amounts of noise and, thus, avoided very small signals.

The data in Figure 2 suggest that subjects learned near-optimal
control strategies. To more directly evaluate this hypothesis, we plot-
ted the optimal control policies of the ideal actors, as well as the
subjects’ control policies. Figure 3, a and b, shows the average control
policies of the ideal actors in the PN and IPN conditions, respec-

Figure 2. a– c, Subjects’ efficiencies in the NN, PN, and IPN conditions, respectively. Efficiency on an individual trial is defined
as the ratio of a subject’s performance (the amount of time that the object spent in the target region) to the average performance
of the ideal actor. Black bars indicate a subject’s efficiency during the first 30 trials of a session, whereas gray bars indicate the
efficiency during the last 30 trials (error bars give the SEMs). In the NN condition, six of six subjects showed significant improve-
ment in efficiency (two-tailed t test, p & 0.01), in the PN condition, five of six subjects showed significant improvement ( p &
0.03), and, in the IPN condition, six of six subjects showed significant improvement ( p & 0.03). d, Subjects’ average control
signals (based on the magnitude of these signals, not their signs) during the first and last 2 s of the final 30 trials (error bars show
SEM). e, Typical control strategies during the last 30 trials of randomly selected subjects in the NN, PN, and IPN conditions.
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tively. [Recall that a control policy is a mapping from the position
error (xT "x: the position of the center of the target region minus the
position of the object) and the velocity of an object to a control
signal.] The data in these graphs were formed as follows. For each
noise condition, we first found all optimal policies (i.e., all policies
that maximize the expected amount of time that the object spends in
the target region). We then smoothed each optimal policy through
Denauley triangulation, followed by linear interpolation, and, fi-
nally, averaged these smoothed policies. These graphs illustrate the
fact that optimal policies depend on the noise characteristics of the
environment. For example, optimal policies in the PN condition
tend to use smaller control signals than optimal policies in the IPN
condition.

Figure 3, c and d, shows subjects’ control policies in the PN
and IPN conditions, respectively. For each subject, we collected
this information from a subject’s last 30 trials. Identical to Figure
3, a and b, a smooth surface was formed from the data through
Denauley triangulation, followed by linear interpolation. This
was done for each subject in an experimental condition, and then
the surfaces for all subjects within a condition were averaged.
Clearly, subjects in the PN and IPN conditions learned different
policies: subjects in the PN condition tended to use smaller (in
magnitude) control signals than subjects in the IPN condition,
and their control policies tended to be smoother.

We also evaluated the complexity of subjects’ acquired control
strategies by examining the amount of variability in these strategies
that could be accounted for by a linear controller known in the
engineering literature as a proportional-derivative (PD) controller.
A PD controller is defined as u!K1(x"xT)%K2ẋ, where x and ẋ are
the position and velocity of the object, xT is the center of the target
region, K1 and K2 are gain parameters, and u is the control signal.
Using a subject’s last 10 trials, we fit a PD controller (i.e., we deter-
mined values for K1 and K2) by linear regression, where x " xT and ẋ
are the independent variables, and u is the dependent variable.

We first asked whether each subject’s acquired policy could be
accounted for by a fixed PD controller. On average, the PD control-
ler accounted for 42% of the variability in a subject’s control signal
(SD of 8%). We next asked whether the fit could be improved by
using different PD controllers for the initial portion (reflecting a
subject’s planning and feedforward control policy) and final portion

(reflecting a subject’s feedback policy) of each trial. When we fit a PD
controller to the data from the first 2 s of a subject’s trials, the con-
troller accounted for 27% of the variability in a subject’s control
signal on average (SD of 12%). When we fit a PD controller to the
data from the last 2 s, the controller accounted for 32% of the vari-
ability in a subject’s control signal on average (SD of 18%). We
conclude that PD controllers do not provide good accounts of sub-
jects’ acquired control strategies. Moreover, it seems unlikely that
any linear controller will provide a good account of this data, sug-
gesting that subjects acquired nonlinear control policies.

Finally, we further evaluated the claim discussed above that
subjects in the PN condition learned to use smaller control signals
and that subjects in the IPN condition used larger signals, by
running an additional experiment. Five subjects were run in the
PN condition and five subjects were run in the IPN condition, in
which each subject performed four blocks of trials in which each
block consisted of 60 trials. At random, 10 trials of the final block
were selected to serve as “catch” trials. On a catch trial, the initial
position of the object and the center position of the target region
were always set to fixed values ("27.5 and 12.5, respectively, in
which the horizontal dimension of the workspace had coordi-
nates from "50 to 50), and the forces applied to the object were
not corrupted by noise. Consequently, catch trials had the same
properties for all subjects, and differences in performances on
catch trials can be attributed to differences in subjects’ training
histories. Figure 4 shows subjects’ average control signals (using
the magnitudes of the signals, not signs) during an entire catch
trial and during the first 2 s or last 2 s of a catch trial. Subjects
trained in the PN condition consistently used smaller control
signals than subjects trained in the IPN condition (based on two-
tailed t tests, the differences between the PN and IPN groups are
statistically significant at the p & 0.05 level when considering an
entire catch trial and when considering the first 2 s of a catch trial;
the difference is not significant when considering the last 2 s of a
catch trial). Clearly, subjects learned control strategies tailored to
the specific noise characteristics of their training conditions: sub-
jects in the PN group used smaller control signals, indicating that
they learned that large signals lead to large amounts of noise
corrupting the forces, whereas subjects in the IPN group used
larger control signals, indicating that they learned that small sig-
nals lead to large amounts of noise corrupting the forces.

Discussion
This article has reported research evaluating human subjects’
abilities to learn to control a stochastic dynamic system when the

Figure 3. a, b, Average optimal control policies for the PN and IPN conditions, respectively.
c, d, Subjects’ average control policies in the PN and IPN conditions, respectively.

Figure 4. Subjects’ average control signals (based on the magnitude of these signals, not
their signs) from the PN and IPN groups during an entire catch trial or during the first or last 2 s
of a catch trial (error bars show SEM).
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forces applied to the system were corrupted with noise whose
magnitudes were either proportional or inversely proportional to
the sizes of subjects’ control signals. We also used dynamic pro-
gramming to calculate the mathematically optimal control laws
of an ideal actor for each noise condition. The results suggest that
people learned control strategies tailored to the specific noise
characteristics of their training conditions. In particular, they
learned to use smaller control signals when forces were corrupted
by proportional noise and to use larger signals when forces were
corrupted by inversely proportional noise. These control strategies
allowed subjects to achieve levels of performance near the
information-theoretic upper bounds. We conclude that subjects
learned to behave in a near-optimal manner, meaning that they
learned to efficiently use all available information to plan and exe-
cute control policies that maximized performances on their tasks.

These results suggest several issues that will need to be ad-
dressed in future research. First, our results indicate that subjects
were effective learners regardless of whether they were trained in
the PN or IPN condition. This might be regarded as a surprising
result. The PN condition closely resembles biological motor
noise [recent data and theories suggest that noise in biological
motor systems scales with the size of the control signal (Clamann,
1969; Matthews, 1996; Harris and Wolpert, 1998)], whereas the
IPN condition does not. Therefore, in some sense, subjects en-
tered our experiment with lots of experience with the type of
noise present in the PN condition but with little experience with
the type of noise present in the IPN condition. Consequently, one
might have predicted that subjects would find it easy to learn to
perform the task in the PN condition but difficult or impossible
to learn to perform this task in the IPN condition. The results
reported here suggest that this prediction is not correct. Future
research will need to address this issue in a more detailed manner.
That is, future work will need to investigate biases on human motor
learning and adaptive control by studying constraints that determine
the types of dynamics and noise people can easily learn versus the
types they can learn only with significant difficulty, if at all.

Second, as mentioned above, there are many open issues con-
cerning the construction of ideal actors. Ideal actors typically have
unlimited perceptual, motor, and cognitive capacities. For example,
ideal actors often have unlimited memory, attentional, and process-
ing resources. According to one school of thought, such actors are
appropriate because they allow researchers to define the
information-theoretic upper bounds on performances that arise
solely because of task constraints and limitations on the information
provided to the actors by the environment. However, according to
another school of thought, ideal actors will provide more useful
benchmarks for human performance when they are restricted by
many of the same mental limitations as possessed by people. Future
research will need to study a broad range of ideal actors to determine
when and how human performances are constrained by task and
environmental factors versus internal, mental factors.

Third, the ideal actors reported in this article used dynamic
programming to calculate optimal control policies. Given that
subjects’ performances were near-optimal, did they also use dy-
namic programming to calculate their control policies? It seems un-
likely that people perform dynamic programming in their heads,
mostly because of its high memory and processing requirements.
For similar reasons, researchers in artificial intelligence have ex-
plored ways of solving complex tasks through techniques that ap-
proximate dynamic programming but have much smaller compu-
tational costs (Si et al., 2004). One such class of techniques is referred
to as “reinforcement learning” techniques (Sutton and Barto, 1998).
Interestingly, neuroscientists have found that the activities of some

neurons are closely related to quantities that appear in reinforcement
learning equations (Seymour et al., 2004; Knutson et al., 2005; Lee,
2006). For example, Schultz et al. (1997) identified dopaminergic
neurons in the primate whose outputs signal errors in the predic-
tions of future salient or rewarding events. Future research will need
to directly address the neural substrate of reinforcement learning
and other approximate dynamic programming methods.
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