COGS109: Lecture 9

Hypothesis testing
July 20, 2023
Modeling and Data Analysis Summer Session 1, 2023
C. Alex Simpkins Jr., Ph.D. RDPRobotics LLC | Dept. of CogSci, UCSD

Plan for today

- Announcements
- Inference using central tendency and variability concepts
- Hypothesis testing
- Confounds

Plan for today II

- Hypothesis testing
- Introduction to models and the modeling process
- Colormaps - custom

Announcements

- Q2 posted
- D4 released
- Github repos
- In process on feedback and A1

Update: the big picture

- Where we are
- 5 parts of the course
- We discussed data
- What is it, how do we manipulate it, import it, python and some matlab implementation
- Filtering
- Computing basic statistics
- We discussed basic visualization
- Plotting data (2d, histograms, scatterplots, etc)

Update: the big picture (II)

- Where we're going
- We will now cover
- Modeling
- what is modeling?
- interpolation, approximation, extrapolation
- Error analysis
- How good is your model?

Update: the big picture (III)

- Where we're going (continued)
- What we're going to cover
- Basic models
- Linear fits, nonlinear fits
- Regression
- Relationship to machine learning
- Interpolation/extrapolation (also data analysis methods)
- Advanced models and modeling methods
- Fitting models with optimization methods
- Artificial neural networks
- AI
- Communicating results
- This has been integrated and will continue to be integrated
- Proper forms of inserting figures and tables in scientific communications
- Format in homeworks is designed to teach proper communication methodology

Extending central tendency and variability to inference and hypothesis testing

CORRELATION

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson

Correlation,
Spearman
Correlation, chi-
square test

COMPARISON OF MEANS REGRESSION

DIFFERENCE IN MEANS BETWEEN VARIABLES

DOES CHANGE IN ONE
VARIABLE MEAN CHANGE IN ANOTHER?

NON-PARAMETRIC TESTS

FOR WHEN

 ASSUMPTIONS IN THESE OTHER 3 CATEGORIES ARE NOTMET
i.e. Wilcoxon ranksum test, Wilcoxon sign-rank test, sign test

```
CORRELATION
ASSOCIATION BETWEEN VARIABLES
i.e. Pearson
Correlation,
Spearman
Correlation, chi-
square test
```

REGRESSION
DOES CHANGE IN ONE
VARIABLE MEAN CHANGE IN ANOTHER?
I.e. simple
regression, multiple
regression

NON-PARAMETRIC FOTESTSEN ASSUMPTIONS IN THESE OTHER 3
CATEGGMPdex.antink NOT
sum te\$d E/Yilcoxon
sign-rank test, sign
test

 Independent Variable

Independent Variable

Best-fitting line

NOT a best-fitting line

This line is a model of the data

Models are mathematical equations generated to represent the real life situation

Independent Variable

This line is a model of the data

Models are mathematical equations generated to represent the real life situation

Independent Variable

Linear regression can be
used to determine whether a change in one variable is related to the change in the
students' grades

The magnitude of the relationship is measured by the slope of the line

Linear regression can be used to determine whether a change in one variable is related to the change in the other variable

The magnitude of the relationship is measured by the slope of the line

Effect size ($\boldsymbol{\beta}_{1}$) can

be estimated using
the slope of the
line

Independent Variable

Effect size ($\boldsymbol{\beta}_{1}$) can be estimated using the slope of the line

Independent Variable

Assumptions of linear regression

1. Linear relationship
2. No multicollinearity
3. No auto-correlation
4. Homoscedasticity

Linearity

Multicollinearity

- Linear regression assumes no multicollinearity. Multicollinearity occurs when the independent variables (in multiple linear regression) are too highly correlated with each other.
- 2 variables are perfectly correlated if they have a correlationn coefficient of 1.0

Autocorrelation

Homoscedasticity - a reminder of what that is

Homoscedasticity

Independent Variable
Not homoscedastic:
points at this end are much further from the line than at the other end

Do not use linear
regression

Does Poverty
 Percentage affect Teen Birth Rate?

Poverty Percentage

Teen Birth Rate

Null Hypothesis:
H_{0} : Poverty Rate does not affect Teen Birth Rate ($\beta_{1}=0$)
Alternative Hypothesis:
H_{a} : Poverty Rate affects Teen Birth Rate $\left(\beta_{1} \neq 0\right)$

	Location	PovPct	Brth15to17	Brth18to19	ViolCrime	TeenBrth
$\mathbf{1}$	Alabama	20.1	31.5	88.7	11.2	54.5
$\mathbf{2}$	Alaska	7.1	18.9	73.7	9.1	39.5
$\mathbf{3}$	Arizona	16.1	35.0	102.5	10.4	61.2
4	Arkansas	14.9	31.6	101.7	10.4	59.9
$\mathbf{5}$	California	16.7	22.6	69.1	11.2	41.1
$\mathbf{6}$	Colorado	8.8	26.2	79.1	5.8	47.0
$\mathbf{7}$	Connecticut	9.7	14.1	45.1	4.6	25.8
8	Delaware	10.3	24.7	77.8	3.5	46.3
9	District_of_Columbia	22.0	44.8	101.5	65.0	69.1
10	Florida	16.2	23.2	78.4	7.3	44.5
11	Georgia	12.1	31.4	92.8	9.5	55.7
12	Hawaii	10.3	17.7	66.4	4.7	38.2
13	Idaho	14.5	18.4	69.1	4.1	39.1
14	Illinois	12.4	23.4	70.5	10.3	42.2
15	Indiana	9.6	22.6	78.5	8.0	44.6
16	lowa	12.2	16.4	55.4	1.8	32.5
17	Kansas	10.8	21.4	74.2	6.2	43.0

EDA: distributions

p-value : the probability of getting the

 observed results (or results more extreme) by chance alone

What would be the p-value of you flipping 16 heads?

Takes into account

the effect size ($\boldsymbol{\beta}_{1}$)
and the SE
p -value : the probability of getting the observed results (or results more extreme) by chance alone

Confounding

Confounding

Your analysis sees an increase in crime rate whenever popsicle sales increase. What could confound this analysis?

			C	C		
A						
popsicle						
preference					\quad new gun laws \quad temperature \quad	changes in
:---:						
popsicle prices		new law				
:---:						
enforcement						
officers						

We'll discuss additional approaches of how to account for confounding in your analysis in another lecture.

Ignoring confounders will

 lead you to draw incorrect conclusions from your analyses
Spine Surgery Results

Sample: 400 patients with index vertebral fractures

Vertebroplasty	Conservative care	Relative risk (95\% confidence interval)
30/200 (15\%)	15/200 (7.5\%)	2.0 (1.1-3.6)
subseque	t fractures	Eek....looks like vertebroplasty was way worse for patients!

But wait...at time of initial fracture...

	Vertebroplasty $\mathbf{N = 2 0 0}$	Conservative care $\mathbf{N}=\mathbf{2 0 0}$
Age, y, mean \pm SD	78.2 ± 4.1	79.0 ± 5.2
Weight, kg, mean \pm SD	54.4 ± 2.3	53.9 ± 2.1
Smoking status, No. (\%)	$110(55)$	$16(8)$
Age and weight are similar between groups. Smoking Status differs vastly.		

So...let's stratify those results quickly

Smoke			No smoke		
Vertebroplasty	Conservative	RR (95\% confidence interval)	Vertebroplasty	Conservative	RR (95\% confidence interval)
$23 / 110(21 \%)$	$3 / 16(19 \%)$	$1.1(0.4,3.3)$	$7 / 90(8 \%)$	$12 / 184(7 \%)$	$1.2(0.5,2.9)$

Risk of re-fracture is now similar within group

