COGS109: Lecture 9

Modeling and Data Analysis Summer Session 1, 2023 C. Alex Simpkins Jr., Ph.D. RDPRobotics LLC | Dept. of CogSci, UCSD

Hypothesis testing July 20, 2023

Plan for today

- Announcements
- Inference using central tendency and variability concepts
- Hypothesis testing
- Confounds

Plan for today II

- Hypothesis testing
- Introduction to models and the modeling process
- Colormaps custom

Announcements

- Q2 posted
- D4 released
- Github repos
- In process on feedback and A1

Update: the big picture

- Where we are
 - 5 parts of the course
 - We discussed data
 - matlab implementation
 - Filtering
 - Computing basic statistics
 - We discussed basic visualization
 - Plotting data (2d, histograms, scatterplots, etc)

• What is it, how do we manipulate it, import it, python and some

- Where we're going
 - We will now cover
 - Modeling
 - what is modeling?
 - interpolation, approximation, extrapolation
 - Error analysis
 - How good is your model?

Update: the big picture (II)

- Where we're going (continued)
 - What we're going to cover
 - Basic models
 - Linear fits, nonlinear fits
 - Regression
 - Relationship to machine learning
 - Interpolation/extrapolation (also data analysis methods)
 - Advanced models and modeling methods
 - Fitting models with optimization methods
 - Artificial neural networks
 - AI
 - Communicating results
 - This has been integrated and will continue to be integrated

 - methodology

Update: the big picture (III)

 Proper forms of inserting figures and tables in scientific communications Format in homeworks is designed to teach proper communication

Extending central tendency and variability to inference and hypothesis testing

CORRELATION

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson Correlation, Spearman Correlation, chisquare test

COMPARISON OF MEANS REGRESSION

DOES CHANGE IN ONE DIFFERENCE IN MEANS **BETWEEN VARIABLES** VARIABLE MEAN CHANGE IN ANOTHER?

i.e. t-test, ANOVA

I.e. simple regression, multiple regression

NON-PARAMETRIC TESTS

FOR WHEN **ASSUMPTIONS IN THESE OTHER 3 CATEGORIES ARE NOT** MET

> i.e. Wilcoxon ranksum test, Wilcoxon sign-rank test, sign test

CORRELATION

ASSOCIATION **BETWEEN VARIABLES**

i.e. Pearson Correlation, Spearman Correlation, chisquare test

COMPARISON OF DIFFERENCE N MEANS **BETWEEN VARIABLES**

i.e. t-test, ANOVA

REGRESSION

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER? I.e. simple regression, multiple

regression

NON-PARAMETRIC FORWHEN **ASSUMPTIONS IN THESE OTHER 3** CATEGORIES AREANOT sum te**st**, Evrilcoxon sign-rank test, sign test

Independent Variable

Variable ependent

Linear regression can be used to describe this relationship

Independent Variable

Dependent Variable

Best-fitting line

Independent Variable

NOT a best-fitting line Variable Dependent

Independent Variable

Independent Variable

This line is a model of the data

Models are mathematical equations generated to *represent* the real life situation

Variable Dependent

Independent Variable

This line is a model of the data

Models are mathematical equations generated to *represent* the real life situation

BS rad O S stude

Linear regression can be used to determine whether a change in one variable is related to the change in the other variable

of absences

rades 5 S stude

of absences

Linear regression can be used to determine whether a change in one variable is related to the change in the other variable

> The magnitude of the relationship is L measured by the slope of the line

rades

S

stude

This is also referred to as the model's <u>effect size</u> (β_1)

of absences

Linear regression can be used to determine whether a change in one variable is related to the change in the other variable

> The magnitude of the relationship is L measured by the slope of the line

Effect size (β_1) can be estimated using the slope of the line

Independent Variable

Effect size (β_1) can be estimated using the slope of the line

Independent Variable

Increasing β_1

The closer the points are to the regression line, the *less* uncertain we are in our estimate

Assumptions of linear regression

- 1. Linear relationship
- 2. No multicollinearity
- 3. No auto-correlation
- 4. Homoscedasticity

Linearity

Temperature

Multicollinearity

- Linear regression assumes no multicollinearity. each other.
- 2 variables are perfectly correlated if they have a correlationn coefficient of 1.0

Multicollinearity occurs when the independent variables (in multiple linear regression) are too highly correlated with

Autocorrelation

Autocorrelation occurs when the observations are *not* independent of one another (i.e. stock prices)

Homoscedasticity - a reminder of what that is

Homoscedasticity

Variable Dependent

Not homoscedastic: points at this end are much further from the line than at the other end

Independent Variable

Do not use linear regression

Does Poverty Percentage affect Teen Birth Rate?

Poverty Percentage

Null Hypothesis: H_0 : Poverty Rate does not affect Teen Birth Rate ($\beta_1=0$)

<u>Alternative Hypothesis:</u>

H_a: Poverty Rate affects Teen Birth Rate ($\beta_1 \neq 0$)

	Location	PovPct	Brth15to17	Brth18to19	ViolCrime	TeenBrth
1	Alabama	20.1	31.5	88.7	11.2	54.5
2	Alaska	7.1	18.9	73.7	9.1	39.5
3	Arizona	16.1	35.0	102.5	10.4	61.2
4	Arkansas	14.9	31.6	101.7	10.4	59.9
5	California	16.7	22.6	69.1	11.2	41.1
6	Colorado	8.8	26.2	79.1	5.8	47.0
7	Connecticut	9.7	14.1	45.1	4.6	25.8
8	Delaware	10.3	24.7	77.8	3.5	46.3
9	District_of_Columbia	22.0	44.8	101.5	65.0	69.1
10	Florida	16.2	23.2	78.4	7.3	44.5
11	Georgia	12.1	31.4	92.8	9.5	55.7
12	Hawaii	10.3	17.7	66.4	4.7	38.2
13	Idaho	14.5	18.4	69.1	4.1	39.1
14	Illinois	12.4	23.4	70.5	10.3	42.2
15	Indiana	9.6	22.6	78.5	8.0	44.6
16	Iowa	12.2	16.4	55.4	1.8	32.5
17	Kansas	10.8	21.4	74.2	6.2	43.0

EDA: distributions

Data source: *Mind On Statistics*, 3rd edition, Utts and Heckard.

Data source: *Mind On Statistics*, 3rd edition, Utts and Heckard.

Data source: *Mind On Statistics*, 3rd edition, Utts and Heckard.

the <u>model</u> the Poverty Rate		
	relationsh measured model's e	· /
¹⁵ erty Percentage	20	25

The magnitude of this relationship is measured by the model's effect size (slope of the line, β_1): 2.03

25

20

5 Poverty Percentage

The grey range here is the SE. The smaller the SE, the stronger the relationship

20

25

15 **Poverty Percentage**

p-value : the probability of getting the chance alone

observed results (or results more extreme) by

distribution: what occurs

p-value : the probability of getting the observed results (or results more extreme) by chance alone

7 8 9 10 11 12 13 14 15 16 number of heads

probability of getting the observed results

	4e+05 -					
count	3e+05 -	The probability of getting 10 heads <i>or something</i> <i>more extreme</i> is				
		# of 10 or more extreme flips / total flips				
	2e+05 -	(2+218+5,877+60,731+ 60,766+5,973+208+2)/ 1x10 ⁶				
	1e+05 -	$= 133,777/1 \times 10^{6}$				
	0e+00 -	2 218 5,87				
		0 1 2 3 4 5 6				
		n				

	4e+05 -					
count	3e+05 -	The probability of getting 10 heads <i>or something</i> <i>more extreme</i> is				
		# of 10 or more extreme flips / total flips				
	2e+05 -	(2 + 218 + 5,877 + 60,731 + 60,766 + 5,973 + 208 + 2) /				
	1e+05 -	1×10^{6} = 133,777 / 1×10 ⁶ 60,73				
	0e+00 -	$= 0.133 (13.3\%) 218 \frac{5,87}{7}$				
	L	0 1 2 3 4 5 6				
		n				

	4e+05 -	
count	3e+05 -	The probability of getting 10 heads <i>or something</i> <i>more extreme</i> is
		# of 10 or more extreme flips / total flips
	2e+05 -	(2 + 218 + 5,877 + 60,731 + 60,766 + 5,973 + 208 + 2) / 1x10 ⁶
	1e+05 -	
	0e+00 -	$= 133,777 / 1 \times 10^{6} $ $= 0.133 (13.3\%) 2^{18} \frac{5,87}{7}$ $= 0.133 (13.3\%) 2^{18} \frac{5,87}{7}$
		n

p-value : the probability of getting the observed results (or results more extreme) by chance alone

p-value : 0.133

p-value : the probability of getting the observed results (or results more extreme) by chance alone

What if you observed 16 heads??

7 8 9 10 11 12 13 14 15 16 number of heads

What would be the p-value of you flipping 16 heads?

Poverty Percentage Takes into account the effect size (β_1) and the SE

p-value : the probability of getting the observed results (or results more extreme) by chance alone

Confounding

Confounding

popsicles

Your analysis sees an increase in crime rate whenever popsicle sales increase. What could confound this analysis?

We'll discuss additional approaches of how to account for confounding in your analysis in another lecture.

Ignoring confounders will lead you to draw incorrect conclusions from your analyses

Sample: 400 patients with index vertebral fractures

Conservative care Relative risk (95% confidence interval) Vertebroplasty 2.0(1.1 - 3.6)15/200 (7.5%) 30/200 (15%) way worse for patients!

subsequent fractures

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503514/

Spine Surgery Results

Eek....looks like vertebroplasty was

But wait...at time of initial fracture...

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503514/

ertebroplasty	Conservative care		
= 200	N = 200		
3.2 ± 4.1	79.0 ± 5.2		
4 ± 2.3	53.9 ± 2.1		
0 (55)	16 (8)		

Age and weight are similar between groups. Smoking Status differs vastly.

So...let's stratify those results quickly

Smoke		No smoke		
Vertebroplasty Conservative	RR (95% confidence	Vertebroplasty	Conservative	RR (95% confidence
	interval)			interval)
23/110 (21%) 3/16 (19%)	1.1 (0.4, 3.3)	7/90 (8%)	12/184(7%)	1.2 (0.5, 2.9)

Risk of re-fracture is now similar within group

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503514/

