
COGS109: Lecture 16

Search and AI
July 27, 2023

Modeling and Data Analysis
Summer Session 1, 2023

C. Alex Simpkins Jr., Ph.D.
RDPRobotics LLC | Dept. of CogSci, UCSD

Announcements

• New cape replacements logistics

• Assignments remaining A2, A3, D5, D6, D7, Q3, Q4, project

• Project checkpoint 2 EDA

• Project meetings to check in

Outline for this lecture
■ Intro to AI
■ Search methods

What is Artificial Intelligence (AI)?
■ Human Intelligence has many definitions, but

We can consider two important forms
■ General intelligence (G)
■ Specific intelligence factors

■ No perfect agreement of the AI definition
Still evolving as a field

■ Broadly, one useful definition is the field which
attempts to use artificial devices (usually computers) to
solve problems generally solved by humans

Some problems aren’t yet solved by computers OR
people however, so keep this in mind

■ Another model!!!

What are some AI problems?
■ Much early work done in game playing and theorem

proving
Why? Well-defined rules and algorithms, approaches that
can be clearly laid out and executed
People that play games well and prove theorems are
generally considered to be displaying intelligence
■ Chess/checkers players
■ Geometry
■ Commonsense reasoning

Navigating to class

Task domains in AI (a few)
■ Basic tasks

Perception
■ Vision, Speech
Natural language
■ Understanding, Generation, Translation
Commonsense reasoning
Robot control

■ Formal tasks
Games
■ Chess, backgammon, checkers, go
Mathematics
■ Geometry, logic, integral calculus, proving properties of programs

■ Expert tasks
Engineering
■ Design, fault finding, manufacturing planning
Scientific analysis
Medical diagnosis
Financial analysis

Rich and Knight, Artificial Intelligence

Questions to consider

■ What are our basic assumptions about
intelligence?

■ What techniques can we use to solve AI problems?
■ In what level of detail are we modeling (human or

animal) intelligence?
■ How do we know if we succeed making something

intelligent?

The assumption
■ Physical symbol system [Newell & Simon 1976]

A set of physical patterns related in some
physical way which may be part of other
patterns referred to as symbol structures
System also contains processes which
operate on the structures
■ Creation, modification, reproduction, destruction
A machine producing with time an
evolving set of symbol structures,
existing in a world broader than the mere
set of symbols

■ Physical symbol system hypothesis - “a physical symbol
system has the necessary and sufficient means for general
intelligent action[Rich & Knight 1991].”

What is an AI technique?
■ AI is a tremendously broad field of study
■ AI techniques usually manipulate symbols as defined

previously
A general statement from all the past research is that
intelligence requires knowledge
■ Voluminous, hard to characterize, changing, organized how it will be

used
AI technique is one that exploits knowledge to solve a
problem, where the knowledge is represented such that
■ Captures generalizations (differs from data)
■ Understandable by people providing it
■ Modifiable to correct errors and adapt to changing world
■ Not context-dependent
■ May be accessed in a strategic way (because so much of it)

Model detail/level
■ Are we working to produce a system that performs tasks

the WAY people perform them?
■ Are we working to produce a system that solves the same

problem a person might in the easiest way possible?
■ Both have been addressed by AI methods

As cognitive scientists you will be surprised at the
optimality of the human being from the context of,
mechanical, dynamical, intellectual, computational, and
other perspectives
Some things are more easily done with computers in a
different way than a person might do them
■ Nonsense syllables - storage and coupling to a stimulus syllable

Why would we model human
performance?
■ Testing cognitive theories of human mind

PARRY [Colby, 1975] exploited a model of human paranoid
behavior

■ Let computers understand human reasoning
Reading comprehension

■ Let people understand computer reasoning
■ Use people as models for solving problems, implement

those solution methods in a way that benefits humankind
(and generally the world/environment/etc of course)

Considering the last point and where
we’ve just been…

■ Artificial Neural Networks have been very popular
models to test theories of human problem solving
because of their structural parallel to the human brain’s
functionality

Thus the model we developed of ANN can be used for AI
models

■ Recently massively parallel computational systems are
allowing more experimentation with high performance
AI (with ANN implementation) models

Think about your new computers - laptops have multiple
processor cores now
nVidia’s new 128 processor graphics card

Evaluating model success - a criterion

■ Turing test [Turing 1950] - method for determining
whether a machine can think

Needs 2 people and the machine
Interrogator in separate room
■ Machine and other person communicate with them by typing

questions and receiving typed responses
■ The goal of the machine is to convince the interrogator it is a person

Success is interpreted as suggesting the machine can think

■ As of 2023 no machine has passed a formal Turing
test, though MANY machines have fooled people into
thinking they were persons

ALICE example and chatbots
Foreign child
In chats, no active attempt to disprove chatter as a
person
Tay the racist chatbot

Other criteria
■ Speed to perform a task

Manufacturing (‘build to order’ computers) often use AI-
based robotics to assemble products
Can often do what a skilled person might take hours to
complete in a few minutes

■ Generally this is difficult to construct as single
unifying statement

Instead considering a particular instance with
performance criteria which are more specific is the
general approach
Humans again show their impressive adaptability by
ability to solve such broad problems that defining all the
problems concisely in one statement is very very
difficult!!!

So now what do we do to approach AI
problems?
■ Figure out a strategic way to encode massive

amounts of knowledge
■ Figure out a strategic way to access that

knowledge quickly and efficiently

A general approach to solving problems

■ Define the problem carefully
Specify all assumptions
Specify all given relevant information

■ Analyze the problem
■ Isolate the knowledge needed to find solution
■ Choose best method of solution (technique) and

use it!

An important AI area - search

■ Searches are a common part of life for most
organisms

■ Let’s introduce search with a game

Tower of Hanoi game

■ Start with the configuration to left, finish with
configuration on right

■ Only top ring can be moved at a time, can only be
put on a larger ring or empty peg

Problem space

■ States - the situations we encounter while
attempting to solve the problem

■ Problem Space - the set of all states for a problem
Here it is the set of all possible configurations of the
rings on the pegs

Types of states
■ Initial states - States where a given episode of problem solving

starts
With Hanoi problem one initial state
Other problems may have more

■ Goal or solution states - States that are considered solutions to
the problem

Again one solution state with Hanoi problem
Other problems may have more

■ Failure or impossible states - In some domains, there are states
with the property that if they are ever encountered, the problem
solving is considered a failure

With Hanoi problem, any state in which the rule that rings can
only be placed on bigger rings is violated
However often cast as constraints of the operators

■ States can be explicitly (every possible state defined)
or abstractly specified

Operators
■ We have to be able to manipulate states to make

the problem useful
■ Operator - can be applied to states in the

problem domain, often an operator only acts on
a subset of states

From this state, 3 possible operators can be applied
Red ring can be moved to right hand peg
Blue ring can be moved to left hand peg
Blue ring can be moved to right hand peg

More on operators

■ In this problem state
The red ring cannot be moved to the middle peg
because the blue ring is already there, and it is
smaller.
The green ring can't be moved at all from this state.

■ When an operator is applied to a state, a new
configuration of the problem domain, (a new state)
is formed

What is a solution?

■ Solution to the problem domain - A sequence
of operators that can be performed from a given
initial state, that doesn't pass through any failure
states, and that leads to a goal state

Search for a solution

■ We can apply several techniques
■ The naïve approach

Generate and test
Random search

■ Search spaces
Breadth- and depth- first searches

Generate and Test
1. generate a potential solution
2. see if it is in fact a solution

(a) if so stop
(b) if not, return to 1.

Issues with Generate and Test
searches

■ Problems with G.A.T. if
If there are many possible solutions
If generating them is expensive, time consuming or
dangerous

■ G.A.T. is useful if
set of potential solutions isn't too big,
if it possible to try them quickly
if the more controlled approaches described in the next
few slides can’t be used

■ Refinement
Only try each solution once
easy if all of the possible solutions can be enumerated -
you just try them in order

Refinements of G.A.T.
■ Generate solutions randomly, but to keep a list or an

array of all of the solutions you have tried
■ Before a new one is tried, to see if you have already

tried that one
■ But problem with this approach

if it takes you a long time to solve the problem, your list
of attempted solutions will grow, and you will spend
most of your time checking whether you have tried a
given solution before
If the set of possible solutions is really huge - or if it is
infinite
■ it is best to just generate solutions randomly and not check
■ chance of trying something twice is very small, and the overhead of

checking is very high

Random search - using problem space
to find a solution
■ Assume that the program can store a

representation of the set of states that it has
encountered while trying to solve a problem

■ The algorithm:
1. Start with the initial state.
Loop:
 2.a Choose an operator at random.
 2.b If the operator can't be applied,
 or yields a failure state,
 continue with the previous state at step 2.a.
 2.c If the result is a goal state, stop.
 2.d Otherwise, continue with the new state at step 2.a.

Issues with random search
■ It might get into an infinite loop generating the same

states over and over again.
Similar issues with generate and test, but worse - can get
stuck in a loop where it keeps going back to the same
state, then operating to go forward, and back again
because the same operator is used

■ It might never generate the actual solution
Some techniques are guaranteed to find a solution (if it
exists), this one is not, nor is generate and test

■ It might take an arbitrarily long time to find a solution
No guarantee as to how long it will take to find a solution,
some techniques can guarantee finding solution in a finite
time which is specified

Solutions to problems with random
search
■ Avoiding the first problem

We need a systematic way to explore the state space

■ Avoiding the second/third problems
Find a method of determining which state most likely
will ultimately lead to a solution state

First an introduction to search space

■ Search space = problem space when a search
algorithm is applied to the problem

Search space gets big fast!
■ For 2 operators per state…2^n states per level, (2^(n+1)) - 1 total

states

Dealing with big search spaces

■ Many techniques of AI attempt to deal with
explosively sized search spaces

■ Note also that the above operator equation is only
unique states, it doesn’t include possible
repetitions!

n 2^n 2^(n+1)-1

2 4 7
4 16 31
6 64 128
10 1024 2047
15 32768 65536
20 1048576 2097151
30 1073741824 2147483647

Finding the goal state

■ start with the initial state A, and try to find the goal
by applying operators to that state, and then to the
states B and/or C that result, and so forth

■ often one is also interested in
finding the goal state as fast as possible
 finding a solution that requires the minimum number
of steps
finding a solution that satisfies some other
requirements

Breadth and depth first searches

■ Consider the following space
G is the goal
no operators apply to the states I, J, E, F and H
Of course we only start with A, not knowing the rest

Breadth-first search
■ all of the states at one level of the tree are considered before any of the states at

the next lower level
■ order in which the states at a given level are considered is not necessarily that

shown in the diagram

Depth-first search
■ After operators are applied to a state, one of the the resultant states is

considered next
■ If a node is a failure node or there are no operators that apply to it, the next

node to be considered might be in the level above that of the current node
■ We assumed that when a state is considered, all of the applicable operators

are applied to the state. This isn't always necessary

Some useful properties of Breadth-
and Depth- First Searches to know

■ Simplicity is practical!
■ Breadth-first search can be proved to possess the following properties

1. If a solution exists in the search space, Breadth-first search will
(eventually) find it

2. Breadth-first search will find the shortest possible solution,
measured in terms of number of operator applications

More properties
■ Breadth-first search may take a while computationally, though it will find

the path to the shortest answer by checking all the other possible paths
If a solution is at level N, Breadth-first search will consider all the states
down through level N before any further level, so if minimal solution at N, it
will find it
But if N (minimal solution) is big, with 2 operators per state, Breadth-first
search considers 2^N different states before solving the problem, whereas
depth-first dives straight there (hopefully)

■ Depth-first search does not necessarily satisfy either of the above two
properties

In cases of infinite search space, might go down one branch and not come
back even if the solution is the 2nd level next over!
When space is smaller, depth-first is generally faster
Also good when most of space is failure states

Implementing searches

■ You will read about a general search in more depth
■ algorithm can be tailored to various types of

searches including what we just mentioned (due to
time)

It’s only a few pages on the website
Sample code will be available

A quick intro to a general search
algorithm

 1.1 Make a "bag" containing the initial state.
 2.1 If the bag of states is empty, the search fails.
 2.2 Otherwise, remove a state from the bag.
 2.3 If that state achieves the goal, the search succeeds.
 2.4 Loop through the set of operators:
 3.3 If the operator applies to the state, apply the operator

 and add the resulting state to the bag.
 2.5 Continue at step 2.1.

There are many other, optimized forms
of search
■ Read about these as part of your final assignment

Heuristic search
Best-first search
Hill climbing
Minimizing cost
A* search
Beam search
Two-way search
Island search

Relation to optimization

■ We’ve already learned about search methods
Discussion of bracketing and golden ratio/section
Gradient descent
Minimization in general
■ Local vs. global solutions

■ Now you have a sense of how these methods are
important for AI concepts, and how to extend them
into studies of cognition, behavior, and the human
condition

The evolution of our concepts of modeling
and data analysis in this course
■ We’ve developed an approach to modeling and analyzing physical

systems which can be applied to cognitive modeling from many
perspectives

Capturing, processing and analyzing data
■ Data processing, filtering, manipulation

Computational tools, from pen and paper to matlab
Visualization of that data
Modeling behavioral data
■ Formulating the problem
■ Statistical
■ Computational
■ Evaluation criterion formulation (how well did the model perform?)
Communication of results
■ Reading others’ results and insights
■ Creating reports, collecting results and presenting them clearly

Where to go from here

■ You now have basic tools you can apply to a
variety of problems

■ Depending on the direction you intend to go, the
most important thing to do is to apply any
techniques you really want to learn well

Practice

■ Many topics have been introduced
Choose references given and read

