
COGS109: Lecture 15

Training, associative memory
July 27, 2023

Modeling and Data Analysis
Summer Session 1, 2023

C. Alex Simpkins Jr., Ph.D.
RDPRobotics LLC | Dept. of CogSci, UCSD

Announcements

• New cape replacements logistics

• Assignments remaining A2, A3, D5, D6, D7, Q3, Q4, project

• Project checkpoint 2 EDA

• Project meetings to check in

Outline for today
■ Announcements
■ Instead of a threshold, we can consider other activation

functions
Threshold, sigmoid, linear, etc
Fitting arbitrary functions

■ Multilayer neural networks
Some of the typical network topologies

Outline for today (II)
■ Methods of training networks

What is Supervised learning
What is Unsupervised learning
What is Reinforcement learning

■ Matlab neural network toolbox demos
■ Potential issues with training networks

Overfitting and generalization
■ Methods of dealing with these issues

Other activation function concepts

■ Threshold
■ Sigmoid
■ Gaussian
■ Hyperbolic tangent
■ Sine
■ Unit sum
■ Square root
■ Logistic
■ Softmax
■ Linear
■ Many others

So you can have any shape activation
function
■ Not just threshold
■ Allows you to create real-valued outputs

Sigmoid
■ Equation

Mentioned last time
Matlab - SIGMF()
Vary parameters b and c to control the
steepness of the transition from 0-1
Saturates to 0 as x->-inf, and 1 as x->+inf

■ Networks of neurons with real-valued inputs
and sigmoid activation functions can be used to
approximate mathematical functions

Any continuous real-valued function can be
approximated to arbitrary accuracy with a
feedforward network of at least one hidden layer
Matlab demo -> nnd11fa

Some typical network topologies

Single layer
perceptron

Multi-layer
perceptron

Hopfield
network

Elman recurrent
network

Competitive
networks

Self-organizing
maps

So now we have these fancy networks,
how can we get them to ‘learn?’

Methods of training networks

■ Generally boils down to three learning strategies
Supervised learning
Unsupervised learning
Reinforcement learning

■ Many methods with variants, but basically all fall
under these above categories

Supervised learning
■ Method of learning whereby an error value is generated

from the actual response of the network and the desired
response. Following that, the weights are then modified
such that the error is gradually reduced

■ Training set - A set of known input/output pairs is
presented to the network in order to appropriately adjust the
weights to produce the desired output given a certain input

■ We already saw one example in the perceptron learning
algorithm

■ We will discuss backpropagation today

Unsupervised learning

■ There is still an input/output relationship but no
feedback is provided indicating whether network’s
associations are correct or not

■ The network must discover by itself similarities in
the patterns of the data

Self-organizing networks - networks that possess the
ability to to infer patterns from input-only data

Reinforcement learning

■ Input/output data and a teaching signal
The teaching signal is not a measure of the error,
rather an indication of the result as ‘right’ or ‘wrong’
direction

Neural Network Demos in matlab

■ In matlab (you need the Neural Network Toolbox)
nnd2n1 One-input neuron demonstration.
nnd2n2 Two-input neuron demonstration.
nnd4db Decision boundaries demonstration.
nnd4pr Perceptron rule demonstration.
nnd9sdq Steepest descent for quadratic function
demonstration.
nnd11nf Network function demonstration.
nnd11bc Backpropagation calculation demonstration
nnd11fa Function approximation demonstration.
nnd11gn Generalization demonstration.

Back propagation algorithms
■ General algorithm

Present inputs
Propagate network responses forward
Compute the error between output and desired output
Back-propagate deltas
Update weights
Repeat for next pattern

■ Matlab demo - nnd11bc
■ Coded in python: https://machinelearninggeek.com/backpropagation-

neural-network-using-python/
■ Using scikit-learn in python
■ https://scikit-learn.org/stable/modules/

neural_networks_supervised.html

https://machinelearninggeek.com/backpropagation-neural-network-using-python/
https://scikit-learn.org/stable/modules/neural_networks_supervised.html

Specifically
1. Initialize weights randomly
2. Present an input vector pattern to the network
3. Evaluate the outputs of the network by propagating signals forwards
4. For all output neurons, calculate

1. d_j is desired output of neuron j and y_j is current output

5. For all other neurons compute delta

1. Where delta_k is the delta_j of succeeding layer, and

6. Update weights according to

7. Goto 2 until iterationmax or minimal error

See scikit-learn for built-in modules on
supervised learning
▪ https://scikit-learn.org/stable/modules/

neural_networks_supervised.html

https://scikit-learn.org/stable/modules/neural_networks_supervised.html

NN matlab demos and commands

■ Simple function fit
■ Classification

Potential issues to deal with when
training neural networks

Over-fitting
Generalization
We want to reduce over-fitting and increase
generalization of our fits

What is overfitting again?
▪ Happens in machine learning where we have many

parameters and limited data, the algorithm begins
to fit the noise

▪ Not truly part of the system, varies from one
sample to the next

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmedium.com%2Fgreyatom%2Fwhat-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-
it-6803a989c76&psig=AOvVaw2RnpUlFc9mMXwi3SWPhQRR&ust=1690988870076000&source=images&cd=vfe&opi=89978449&ved=0CA0QjRxqFwoTCKDin8_eu4ADFQAAAAAdAAAAABAD

Techniques to Prevent Overfitting

■ Regularization
Reduction of hidden units
■ Only fit simpler functions
 Weight decay

■ Early stopping
Using validation sets

■ Bayesian regularization
(see the MacKay Book)

■ Others
■ Random dropouts
■ etc

Technique 1: Reduce number of layers
to prevent overfitting
■ Note: Remember that overfitting is a problem when fitting many

parameters to small amounts of data
Infinite data would be then no problem

■ Simplify the function you are fitting by reducing the number of
network hidden layers - similar to using a lower degree
polynomial to fit data

Limits the capability of your network
■ But ahead of time we may not know the complexity of the

function we want to fit, so how do we deal with this?
■ Intuition - visualization of the data allows the programmer insight
■ Others

Technique 2: Regularization to prevent
overfitting
■ Regularization - adding a penalty to the usual error function to encourage

smoothness

■ Here is the regularization parameter and is the smoothness penalty

■ Weight decay sets
Note that when you then take the partial derivative of
 with respect to a weight the update rule will now
include a term that is -w_i.
This will encourage the weights to decay to zero (hence the
name)
Also one can use simply the absolute value - more robust to
outliers L_1 vs. L_2 regularization

€

Enew = E +ν *ω

€

ω =
1
2

wi
2

i
∑

€

ν

€

ω

€

Enew

Regularization types

▪ L_1 regularization
▪ penalizes sum of absolute

value of weights
▪ Model becomes simpler,

more interpretable (i.e. std.
vs. variance)

▪ Robust to outliers

▪ L_2 regularization
▪ penalizes sum of square of

weights
▪ Model becomes complex,

able to handle more complex
patterns

▪ Not robust to outliers

<latexit sha1_base64="9B4oOuPbgitB7FvDiTJiB+zdZKk=">AAACCXicbVDLSsNAFJ34rPUVdelmsAiuSlJF3QhFNy4r2Ac0MUymk3bozCTMTJQSsnXjr7hxoYhb/8Cdf+O0zUJbD1w4nHMv994TJowq7Tjf1sLi0vLKammtvL6xubVt7+y2VJxKTJo4ZrHshEgRRgVpaqoZ6SSSIB4y0g6HV2O/fU+korG41aOE+Bz1BY0oRtpIgQ29mJM+ghfQiyTCmZtntdxTKQ8ofAjoXS2wK07VmQDOE7cgFVCgEdhfXi/GKSdCY4aU6rpOov0MSU0xI3nZSxVJEB6iPukaKhAnys8mn+Tw0Cg9GMXSlNBwov6eyBBXasRD08mRHqhZbyz+53VTHZ37GRVJqonA00VRyqCO4TgW2KOSYM1GhiAsqbkV4gEyiWgTXtmE4M6+PE9atap7Wj2+OanUL4s4SmAfHIAj4IIzUAfXoAGaAINH8AxewZv1ZL1Y79bHtHXBKmb2wB9Ynz9p8pmI</latexit>

! =
1

2

X

i

w2
i

<latexit sha1_base64="zE4Izt9jaCnB9YyAuuccVJjJ7Ts=">AAACIHicbVDLSsNAFJ3UV62vqks3g6XgqiRVrBuh6MZlBfuAJobJdNIOnUnCzEQpaT7Fjb/ixoUiutOvcdoG1NYDA4dzzuXOPV7EqFSm+WnklpZXVtfy64WNza3tneLuXkuGscCkiUMWio6HJGE0IE1FFSOdSBDEPUba3vBy4rfviJA0DG7UKCIOR/2A+hQjpSW3WCvbISd9BM+h7QuEEytNqqktY+5SeO/S22rhJzBTx1oeu8WSWTGngIvEykgJZGi4xQ+7F+KYk0BhhqTsWmaknAQJRTEjacGOJYkQHqI+6WoaIE6kk0wPTGFZKz3oh0K/QMGp+nsiQVzKEfd0kiM1kPPeRPzP68bKP3MSGkSxIgGeLfJjBlUIJ23BHhUEKzbSBGFB9V8hHiDdk9KdFnQJ1vzJi6RVrVinlePrk1L9IqsjDw7AITgCFqiBOrgCDdAEGDyAJ/ACXo1H49l4M95n0ZyRzeyDPzC+vgEImqJP</latexit>

! =
X

i

|wi|

Technique 3: Early stopping to prevent
overfitting
■ Start the weights very small

Then the neural network starts by behaving fairly linearly
The weights gradually increase to handle nonlinearities

■ Split the data into a validation set and a training set
Use the training set to adjust the weights
Use the validation set to compute model error
As the fit improves the error will decrease, when the error starts to
increase again, you are fitting the noise in the training set

M
od

el
 E

rr
or

Training Epochs

Technique 4: Bayesian regularization to
prevent overfitting

■ The Bayesian neural network formalism of David MacKay and
Radford Neal, considers neural networks not as single networks but as
distributions over weights (and biases)

■ The output of a trained network is thus not the result of applying one
set of weights but an average over the outputs from the distribution.

■ This can be computationally expensive but MacKay and Neal have
developed approximations and the approach leads to automatic
regularization that is very effective.
■ MacKay, Neural Computation, Vol. 4, No. 3, 1992, pp. 415 to 447
■ Foresee and Hagan, Proceedings of the International Joint

Conference on Neural Networks, June, 1997

More training issues
■ Improvements on gradient descent

Gradient descent with momentum
Conjugate gradient
Variable learning rate
For nonquadratic functions, minimization (ie Nelder Mead,
golden section line search, Brent’s method, etc - See numerical
methods book)
■ Demos:

nnd12sd1
nnd12sd2
nnd12mo
nnd12vl
nnd12ls
nnd12cg

Unsupervised learning for associative memory

■ Hebbian learning (Hebb 1949)
■ The weights of neurons whos activities are positively correlated

are increased:

■ So when stimulus m is present, the activity of neuron m increases
■ Neuron n is associated with another stimulus n
■ If these two stimuli co-occur in the environment, the Hebbian

learning rule will increase the weights wnm and wmn
Now when stimulus n appears later alone, the positive weight from
n->m will cause neuron m to be also activated

Associative memory with Hopfield networks

■ Associative memory sample
(Yellow)--(banana smell)

■ What is a binary Hopfield network?
Weights are constrained to be
■ Symmetric
■ Bidirectional
■ No self connections (w_ii = 0)
Activity rule

■ We need to specify the order of updates as either
Synchronous

Asynchronous - each neuron sequentially (either fixed or random order) computes
its activation then updates its output state and weights

€

x(a) =Θ(a) ≡
1 a ≥ 0
−1 a < 0
⎧
⎨
⎩

€

ak = wkj x j
j
∑

xk =Θ(ak)

<latexit sha1_base64="brkxyX83WceABRbOXe+on0kkQnU=">AAACMXicbZDLSsNAFIYnXmu8VV26GSwFVyWpom6EopsuK9gLNDVMppN22pkkzEwsJc0rufFNxE0Xirj1JZxeFrX1h4Gf75zDmfN7EaNSWdbYWFvf2NzazuyYu3v7B4fZo+OaDGOBSRWHLBQND0nCaECqiipGGpEgiHuM1L3+/aRefyZC0jB4VMOItDjqBNSnGCmN3Gw574ScdBC8hY4vEE7sNCmmjoy5S+HApU9Fc6Fjhkeaj8yBm9Beqqk2PZq62ZxVsKaCq8aemxyYq+Jm35x2iGNOAoUZkrJpW5FqJUgoihlJTSeWJEK4jzqkqW2AOJGtZHpxCvOatKEfCv0CBad0cSJBXMoh93QnR6orl2sT+F+tGSv/ppXQIIoVCfBskR8zqEI4iQ+2qSBYsaE2CAuq/wpxF+nglA7Z1CHYyyevmlqxYF8VLh4uc6W7eRwZcArOwDmwwTUogTKogCrA4AW8gw/wabwaY+PL+J61rhnzmRPwR8bPL/SVqOc=</latexit>wij = wji

Associative memory with Hopfield networks

■ Associative memory sample
(Yellow)--(banana smell)

■ What is a binary Hopfield network?
Weights are constrained to be
■ Symmetric
■ Bidirectional
■ No self connections (w_ii = 0)
Activity rule

■ We need to specify the order of updates as either
Synchronous

Neurons compute activations
Then update their states

Asynchronous - each neuron sequentially (either fixed or random order) computes
its activation then updates its output state and weights

€

x(a) =Θ(a) ≡
1 a ≥ 0
−1 a < 0
⎧
⎨
⎩

€

ak = wkj x j
j
∑

xk =Θ(ak)

<latexit sha1_base64="brkxyX83WceABRbOXe+on0kkQnU=">AAACMXicbZDLSsNAFIYnXmu8VV26GSwFVyWpom6EopsuK9gLNDVMppN22pkkzEwsJc0rufFNxE0Xirj1JZxeFrX1h4Gf75zDmfN7EaNSWdbYWFvf2NzazuyYu3v7B4fZo+OaDGOBSRWHLBQND0nCaECqiipGGpEgiHuM1L3+/aRefyZC0jB4VMOItDjqBNSnGCmN3Gw574ScdBC8hY4vEE7sNCmmjoy5S+HApU9Fc6Fjhkeaj8yBm9Beqqk2PZq62ZxVsKaCq8aemxyYq+Jm35x2iGNOAoUZkrJpW5FqJUgoihlJTSeWJEK4jzqkqW2AOJGtZHpxCvOatKEfCv0CBad0cSJBXMoh93QnR6orl2sT+F+tGSv/ppXQIIoVCfBskR8zqEI4iQ+2qSBYsaE2CAuq/wpxF+nglA7Z1CHYyyevmlqxYF8VLh4uc6W7eRwZcArOwDmwwTUogTKogCrA4AW8gw/wabwaY+PL+J61rhnzmRPwR8bPL/SVqOc=</latexit>wij = wji

Binary Network learning rule
■ Learning rule

The problem - make a set of memories stable states of
the network’s activity rule
■ Each memory is a binary pattern

■ Setting the weights is done according to Hebb’s rule (sum of outer
products):

■ We may set eta to prevent a particular weight from growing with N:

Associative memory example

■ Pattern completion

■ Error correction

Desired memories:

Continuous form of the Hopfield
network
■ Similar rules, but instead of binary states, we have continuous states from

(-1,1)

■ Eta becomes more important

■ Alternatively, we may fix η and introduce a gain β ∈ (0, ∞) into the activation
function

Plot of y=Tanh(x)

Convergence of the Hopfield network

▪ The hope is that the Hopfield networks we have
defined will perform associative memory recall

▪ We hope that the activity rule of a Hopfield
network can take a partial memory or a corrupted
memory, then perform pattern completion or error
correction to restore the original memory.

▪ But how can we know if this is going to happen?

Stability in nonlinear dynamics

■ Lyapunov functions
If you can show that a lypapunov
function exists for an ANN, then it’s
dynamics converge rather than diverge
Look up lyapunov functions for more info,
there is not time to cover them here

Stability of Hopfield Networks

Hopfield network’s activity rules if implemented
asynchronously have a Lyapunov function that is
convex
So the dynamics will ALWAYS converge to a stable
fixed point
Depends on the fact that HN’s connections are
symmetric and updates are asynchronously made
Mackay p.508 for the proof

Introducing a 1-bit error is corrected in
1 iteration

Brain damage (p. 511 in MacKay) - delete 26 weights, still converges

Imagine a computer where you destroy 20% of the
components and it still works!

Failures of ANN’s

■ Stability of memories is an issue to be considered
■ For failure mode analysis (where hopfield

networks fail to correctly restore memories), see
MacKay Chapter 42

