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Announcements

• New cape replacements logistics 

• Assignments remaining A2, A3, D5, D6, D7, Q3, Q4, project 

• Project checkpoint 2 EDA 

• Project meetings to check in



Outline for today
■ Announcements 
■ Instead of a threshold, we can consider other activation 

functions 
Threshold, sigmoid, linear, etc 
Fitting arbitrary functions 

■ Multilayer neural networks 
Some of the typical network topologies



Outline for today (II)
■ Methods of training networks 

What is Supervised learning 
What is Unsupervised learning 
What is Reinforcement learning 

■ Matlab neural network toolbox demos 
■ Potential issues with training networks 

Overfitting and generalization 
■ Methods of dealing with these issues



Other activation function concepts

■ Threshold 
■ Sigmoid 
■ Gaussian  
■ Hyperbolic tangent 
■ Sine 
■ Unit sum 
■ Square root 
■ Logistic  
■ Softmax  
■ Linear 
■ Many others



So you can have any shape activation 
function
■ Not just threshold 
■ Allows you to create real-valued outputs



Sigmoid 
■ Equation 

Mentioned last time 
Matlab - SIGMF()  
Vary parameters b and c to control the 
steepness of the transition from 0-1 
Saturates to 0 as x->-inf, and 1 as x->+inf 

■ Networks of neurons with real-valued inputs 
and sigmoid activation functions can be used to 
approximate mathematical functions 

Any continuous real-valued function can be 
approximated to arbitrary accuracy with a 
feedforward network of at least one hidden layer 
Matlab demo -> nnd11fa



Some typical network topologies

Single layer 
perceptron

Multi-layer 
perceptron

Hopfield 
network

Elman recurrent 
network

Competitive 
networks

Self-organizing 
maps



So now we have these fancy networks, 
how can we get them to ‘learn?’



Methods of training networks

■ Generally boils down to three learning strategies 
Supervised learning 
Unsupervised learning 
Reinforcement learning 

■ Many methods with variants, but basically all fall 
under these above categories



Supervised learning
■ Method of learning whereby an error value is generated 

from the actual response of the network and the desired 
response.  Following that, the weights are then modified 
such that the error is gradually reduced 

■ Training set - A set of known input/output pairs is 
presented to the network in order to appropriately adjust the 
weights to produce the desired output given a certain input 

■ We already saw one example in the perceptron learning 
algorithm 

■ We will discuss backpropagation today



Unsupervised learning

■ There is still an input/output relationship but no 
feedback is provided indicating whether network’s 
associations are correct or not 

■ The network must discover by itself similarities in 
the patterns of the data 

Self-organizing networks - networks that possess the 
ability to to infer patterns from input-only data



Reinforcement learning

■ Input/output data and a teaching signal  
The teaching signal is not a measure of the error, 
rather an indication of the result as ‘right’ or ‘wrong’ 
direction



Neural Network Demos in matlab

■ In matlab  (you need the Neural Network Toolbox) 
nnd2n1  One-input neuron demonstration. 
nnd2n2  Two-input neuron demonstration. 
nnd4db  Decision boundaries demonstration. 
nnd4pr  Perceptron rule demonstration. 
nnd9sdq   Steepest descent for quadratic function 
demonstration. 
nnd11nf Network function demonstration. 
nnd11bc Backpropagation calculation demonstration 
nnd11fa Function approximation demonstration. 
nnd11gn Generalization demonstration.



Back propagation algorithms
■ General algorithm 

Present inputs 
Propagate network responses forward 
Compute the error between output and desired output 
Back-propagate deltas 
Update weights 
Repeat for next pattern 

■ Matlab demo - nnd11bc 
■ Coded in python: https://machinelearninggeek.com/backpropagation-

neural-network-using-python/  
■ Using scikit-learn in python 
■ https://scikit-learn.org/stable/modules/

neural_networks_supervised.html 

https://machinelearninggeek.com/backpropagation-neural-network-using-python/
https://scikit-learn.org/stable/modules/neural_networks_supervised.html


Specifically
1. Initialize weights randomly 
2. Present an input vector pattern to the network 
3. Evaluate the outputs of the network by propagating signals forwards 
4. For  all output neurons, calculate 

1. d_j is desired output  of neuron j and y_j is current output   

5. For all other neurons compute delta 

1. Where delta_k is the delta_j of succeeding layer, and 

6. Update weights according to  

7. Goto 2 until iterationmax or minimal error



See scikit-learn for built-in modules on 
supervised learning
▪ https://scikit-learn.org/stable/modules/

neural_networks_supervised.html 

https://scikit-learn.org/stable/modules/neural_networks_supervised.html


NN matlab demos and commands

■ Simple function fit 
■ Classification 



Potential issues to deal with when 
training neural networks

Over-fitting 
Generalization 
We want to reduce over-fitting and increase 
generalization of our fits



What is overfitting again?
▪ Happens in machine learning where we have many 

parameters and limited data, the algorithm begins 
to fit the noise 

▪ Not truly part of the system, varies from one 
sample to the next

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmedium.com%2Fgreyatom%2Fwhat-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-
it-6803a989c76&psig=AOvVaw2RnpUlFc9mMXwi3SWPhQRR&ust=1690988870076000&source=images&cd=vfe&opi=89978449&ved=0CA0QjRxqFwoTCKDin8_eu4ADFQAAAAAdAAAAABAD



Techniques to Prevent Overfitting

■ Regularization 
Reduction of hidden units 
■ Only fit simpler functions 
 Weight decay 

■ Early stopping 
Using validation sets 

■ Bayesian regularization  
(see the MacKay Book) 

■ Others 
■ Random dropouts  
■ etc



Technique 1: Reduce number of layers 
to prevent overfitting
■ Note: Remember that overfitting is a problem when fitting many 

parameters to small amounts of data 
Infinite data would be then no problem 

■ Simplify the function you are fitting by reducing the number of 
network hidden layers - similar to using a lower degree 
polynomial to fit data 

Limits the capability of your network 
■ But ahead of time we may not know the complexity of the 

function we want to fit, so how do we deal with this? 
■ Intuition - visualization of the data allows the programmer  insight 
■ Others



Technique 2: Regularization to prevent 
overfitting
■ Regularization -  adding a penalty to the usual error function to encourage 

smoothness 

■ Here    is the regularization parameter and       is the smoothness penalty 

■ Weight decay sets  
Note that when you then take the partial derivative of     
    with respect to a weight the update rule will now 
include a term that is -w_i. 
This will encourage the weights to decay to zero (hence the 
name) 
Also one can use simply the absolute value - more robust to 
outliers L_1 vs. L_2 regularization
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Regularization types

▪ L_1 regularization 
▪ penalizes sum of absolute 

value of weights 
▪ Model becomes simpler, 

more interpretable (i.e. std. 
vs. variance) 

▪ Robust to outliers

▪ L_2 regularization 
▪ penalizes sum of square of 

weights 
▪ Model becomes complex, 

able to handle more complex 
patterns 

▪ Not robust to outliers
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Technique 3: Early stopping to prevent 
overfitting
■ Start the weights very small 

Then the neural network starts by behaving fairly linearly 
The weights gradually increase to handle nonlinearities 

■ Split the data into a validation set and a training set  
Use the training set to adjust the weights 
Use the validation set to compute model error 
As the fit improves the error will decrease, when the error starts to 
increase again, you are fitting the noise in the training set
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Technique 4: Bayesian regularization to 
prevent overfitting

■ The Bayesian neural network formalism of David MacKay and 
Radford Neal, considers neural networks not as single networks but as 
distributions over weights (and biases)     

■ The output of a trained network is thus not the result of applying one 
set of weights but an average over the outputs from the distribution.   

■ This can be computationally expensive but MacKay and Neal have 
developed approximations and the approach leads to automatic 
regularization that is very effective. 
■ MacKay, Neural Computation, Vol. 4, No. 3, 1992, pp. 415 to 447 
■ Foresee and Hagan, Proceedings of the International Joint 

Conference on Neural Networks, June, 1997



More training issues
■ Improvements on gradient descent 

Gradient descent with momentum 
*Conjugate gradient* 
Variable learning rate 
For nonquadratic functions, minimization (ie Nelder Mead, 
golden section line search, Brent’s method, etc - See numerical 
methods book) 
■ Demos: 

nnd12sd1 
nnd12sd2 
nnd12mo 
nnd12vl 
nnd12ls 
nnd12cg



Unsupervised learning for associative memory

■ Hebbian learning (Hebb 1949) 
■ The weights of neurons whos activities are positively correlated 

are increased: 

■ So when stimulus m is present, the activity of neuron m increases 
■ Neuron n is associated with another stimulus n 
■ If these two stimuli co-occur in the environment, the Hebbian 

learning rule will increase the weights wnm and wmn 
Now when stimulus n appears later alone, the positive weight from 
n->m will cause neuron m to be also activated



Associative memory with Hopfield networks

■ Associative memory sample 
(Yellow)--(banana smell) 

■ What is a binary Hopfield network? 
Weights are constrained to be 
■ Symmetric 
■ Bidirectional 
■ No self connections (w_ii = 0) 
Activity rule 

■ We need to specify the order of updates as either 
Synchronous 

Asynchronous - each neuron sequentially (either fixed or random order) computes 
its activation then updates its output state and weights
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Associative memory with Hopfield networks

■ Associative memory sample 
(Yellow)--(banana smell) 

■ What is a binary Hopfield network? 
Weights are constrained to be 
■ Symmetric 
■ Bidirectional 
■ No self connections (w_ii = 0) 
Activity rule 

■ We need to specify the order of updates as either 
Synchronous 

Neurons compute activations 
Then update their states 

Asynchronous - each neuron sequentially (either fixed or random order) computes 
its activation then updates its output state and weights
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Binary Network learning rule
■ Learning rule 

The problem - make a set of memories         stable states of 
the network’s activity rule 
■ Each memory is a binary pattern 

■ Setting the weights is done according to Hebb’s rule (sum of outer 
products): 

■ We may set eta to prevent a particular weight from growing with N:



Associative memory example

■ Pattern completion 

■ Error correction

Desired memories:



Continuous form of the Hopfield 
network
■ Similar rules, but instead of binary states, we have continuous states from 

(-1,1) 

■ Eta becomes more important 

■ Alternatively, we may fix η and introduce a gain β ∈ (0, ∞) into the activation 
function

Plot of y=Tanh(x)



Convergence of the Hopfield network

▪ The hope is that the Hopfield networks we have 
defined will perform associative memory recall 

▪ We hope that the activity rule of a Hopfield 
network can take a partial memory or a corrupted 
memory, then perform pattern completion or error 
correction to restore the original memory. 

▪ But how can we know if this is going to happen?



Stability in nonlinear dynamics

■ Lyapunov functions 
If you can show that a lypapunov 
function exists for an ANN, then it’s 
dynamics converge rather than diverge 
Look up lyapunov functions for more info, 
there is not time to cover them here



Stability of Hopfield Networks

Hopfield network’s activity rules if implemented 
asynchronously have a Lyapunov function that is 
convex 
So the dynamics will ALWAYS converge to a stable 
fixed point 
Depends on the fact that HN’s connections are 
symmetric and updates are asynchronously made 
Mackay p.508 for the proof



Introducing a 1-bit error is corrected in 
1 iteration



Brain damage (p. 511 in MacKay) - delete 26 weights, still converges



Imagine a computer where you destroy 20% of the 
components and it still works!



Failures of ANN’s

■ Stability of memories is an issue to be considered 
■ For failure mode analysis (where hopfield 

networks fail to correctly restore memories), see 
MacKay Chapter 42


