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Announcements

• New cape replacements logistics 

• Assignments remaining A2, A3, D5, D6, D7, Q3, Q4, project 

• Project checkpoint 2 EDA 

• Project meetings to check in



But is there another way?

■ As cognitive scientists you might want to create a fit to very 
nonlinear difficult data, and the methods we have used may have 
difficulty 
• Or model a system whose properties are not simple, or are difficult to define 

■ You may want to model cognition and performance of large groups 
of structure in the brain rather than just behavior 
• Gosh I wish there was a model for these sorts of concepts…



There is!  Artificial Neural Networks (A.N.N.’s)
■ A study of nature leads to a useful model 

• Something about the organization of the structures of the 
brain allows us to solve complex problems with ease, adapt 
to new situations, and deal with large errors, incomplete 
information and faults (brain injury) 

• Artificial Neural Networks are an attempt to simulate by 
mathematical means an idealized representation of the 
basic elements of the brain and their 
■ Functionality 
■ Interconnections 
■ Signal processing 
■ Self-organization capabilities



Brief review of neuronal structures and 
relation to ANNs

A simplified biological neuron Classic threshold logic unit



One neuron alone is not where the true 
power lies
■ Electrical impulses travel along the axons and are 

transmitted to other neurons via synaptic connections 
■ If enough incoming pulses arrive in a particular neuron in 

a given amount of time, the neuron fires, transmitting a 
new electrical impulse down its axon 

■ This is a fairly slow process (relative to computer 
architecture) for a single neuron, but…



Why is a neural structure so powerful?

■ Massively parallel 
Parallel vs. serial demo 

■ Very fault tolerant 
When you for example are writing a program and miss a .^ or 
misspell a variable, that is a fault, brain is less sensitive to 
that kind of thing since many neurons contribute to the 
same computation



Why is a neural structure so powerful 
(II)?
■ Low power consumption 

Brain consumes orders of magnitude less energy than any 
known digital technology for similar elementary operations 
(logic, for example) 

■ 10^11 neurons, and ~10^15 connections  
Plasticity of the brain - adaptation of connectivity patterns 
which allows us to learn 
Compare 10^3-10^5 connections of each neuron to others 
with ~10 for a digital logic circuit 

■ Highly interconnected nature



The double-edged sword of A.N.N.’s

■ A.N.N.’s solve problems in very different ways from usual 
computer programming 

No series of precise instructions (program) for the machine 
to execute 
ANN is more adaptive, self-organizing progressively to 
approximate the solution 
■ Frees the problem solver from having to specify the steps to a solution 
■ Also hides the steps to the solution, so you may not learn how a problem 

is being solved by a person in an experiment for example, you can just 
model it in a way that predicts the answer 

Example - two volunteers, sentence comprehension



Look not for the panacea of modeling, 
look for what’s useful for your purposes

■ (Panacea - a solution or remedy for all difficulties 
or diseases) 

■ So take-home message - as always with modeling, 
use the ANN model with care, consider the 
application and you are likely to gain many useful 
insights using them 

Mouse example



A.N.N.’s are best at…
■ ANN’s are best at problems where little or nothing is 

known, so building a mathematical model is difficult, but 
there happens to be a great deal of data is available 

A.N.N.’s are data-driven 
■ Some common applications of this type are  

pattern classification 
non-linear function approximation and system modeling 
Control 
associative memory 
system prediction



The basics of Artificial Neurons

■ ANN’s are made of up many repetitions of the 
same simple structure, artificial neurons 

■ 1943, McCulloch and Pitts wrote a very influential 
paper (which you will read) and introduced: 

The Threshold Logic Unit (TLU) also known as a 
Linear Threshold Gate



The threshold logic unit (TLU)
■ Takes real-valued inputs (e.g. 0.243 as opposed to 1 or 0 

only), xi, each input associated with a “weight” wi (or 
“synaptic weight”), which represents the contact between 
two nerve cells 

■ Performs a weighted sum of the x’s, and if the sum is 
larger than a threshold (theta), the neuron outputs a 1, 
otherwise a 0 

■ The neuron will ‘fire’ if the threshold is exceeded, 
otherwise it does nothing



Artificial Neuron Firing…

■ Neuron Activation is defined by the weighted 
sum of 

■ And whether the neuron fires is determined by
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Perceptrons are more general than 
TLU’s

■ So how is this useful?   
Since it can output a 0 or 
1, a perceptron alone can 
perform many logical 
operations 
AND, OR, NOT 
■ Demos 
Combined with more than 
one TLU, you can have 
continuous functions, 
since output of one can 
be weighted input to 
another



How does it ‘learn?’
■ The idea is that the perceptron is ‘trained’ by beginning with a 

guess for the weights, giving it an input, it generates an output 
(0 or 1), then that is compared with the desired output, and the 
weights are updated according to some rule 

i.e. - if it was wrong, change the weights so next time it will be 
‘less wrong’  
think about our discussions of error criteria 

■ After the training period, it should respond to certain inputs 
with reasonable outputs 

■ Guess what is a popular algorithm for updating the weights? 
Yep, gradient descent - usually modified to be conjugate gradient 
to help with convergence



Perceptron learning rule

1. Initialize weights and threshold randomly 
2. Present an input vector to the neuron 
3. Evaluate the output of the neuron 
4. Evaluate the error of the neuron and update the weights 

according to : 

1. Where d is the desired output, y is the actual output of the 
neuron, and           is a parameter called the step 
size 

5. Go to step 2 for a certain number of iterations or until the 
error is less than a pre-specified value€ 

wi
t+1 = wi

t +η(d − y)xi

€ 

η(0 <η <1)



■ Computing "and": 
‘And’ review
There are n inputs, each either a 0 or 1. To compute the logical "and" of 
these n inputs, the output should be 1 if and only if all the inputs are 1. 
This can easily be achieved by setting the threshold of the perceptron to n. 
The weights of all edges are 1. The net input can be n only if all the inputs 
are active.





■ Computing "or": 
‘Or’ revieww
It is also simple to see that if the threshold is set to 1, then the output will 
be 1 if at least one input is active. The perceptron in this case acts as the 
logical "or".





■ Computing "not": 
‘Not’ review
The logical "not" is a little tricky, but can be done. In this case, there is 
only one boolean input. Let the weight of the edge be -1, so that the input 
which is either 0 or 1 becomes 0 or -1. Set the threshold to 0. If the input is 
0, the threshold is reached and the output is 1. If the input is -1, the 
threshold is not reached and the output is 0.



Limitations of a single neuron
■ XOR problem - 

build a perceptron which takes 2 boolean inputs and outputs the XOR of them. What we want 
is a perceptron which will output 1 if the two inputs are different and 0 otherwise.
Consider the following perceptron as an attempt to solve the problem

•If the inputs are both 0, then net input is 0 which is less than the threshold (0.5). So the output is 0 - desired output.
•If one of the inputs is 0 and the other is 1, then the net input is 1. This is above threshold, and so the output 1 is obtained.
•But the given perceptron fails for the last case

Input Input Desired 
Output

0 0 0
0 1 1
1 0 1
1 1 0



Never fear, we can make more!

■ That’s why combining more than one makes 
neural networks more general for solving 
problems



Generic PLA code (not using neural 
network toolbox or module)
■ Original TLU’s did not have learning rule - 

weights had to be designed 
■ 50’s Rosenblatt’s main contributions were the 

perceptron learning rule 
■ Demo/explanation 

Binary classifier



Limitations of a single neuron
■ XOR problem - 

build a single layer, single unit perceptron which takes 2 boolean inputs and outputs the XOR 
of them. What we want is a perceptron which will output 1 if the two inputs are different and 
0 otherwise.
Consider the following perceptron as an attempt to solve the problem

Input Input Desired 
Output

0 0 0
0 1 1
1 0 1
1 1 0

•If the inputs are both 0, then net input is 0 which is less than the threshold (0.5). So the output is 0 - desired output.
•If one of the inputs is 0 and the other is 1, then the net input is 1. This is above threshold, and so the output 1 is obtained.
•But the given perceptron fails for the last case



Limitations of single layer perceptrons (II)

■ Widely publicized in the book Perceptrons  [MiPa69] by Marvin 
Minsky and Seymour Papert 

■ It was not until the 1980s that these limitations were overcome with 
im- proved (multilayer) perceptron networks and associated learning 
rules 
• The funding and thus literature for ANN’s slowed to a crawl until then!



How do we resolve this?
■ Feedforward multilayer networks 

Simple implementation 

Computational capability 

Input-output data 

No feedback (signals only travel 
forward) 

■ It can be shown that by connecting 
together multiple TLU’s in a two 
layer network we can solve the XOR 
problem 

Implements two linear decision 
boundaries



An important concept…

■ Feedforward system 

■ Feedback system



Feedforward-feedback example
■ Position control of a motor angle or human limb joint angle 
■ Path planning 
■ Feedforward has advantages and drawbacks 

Main drawback - model is never perfect, and noise can cause 
severe drift over time, leading to inaccuracies 
■ Any small error in the model tends to cause massive inaccuracies 
■ Any disturbances cause errors - noise or external inputs 
Advantage - simplicity in computation and sensor requirements 

■ Feedback has advantages of robustness and error correction



A common feedback example - 
inverted pendulum control
■ People standing or walking can be modeled as inverted pendulums



Another example - robotics application

■ Big dog video 

■ Littledog video



Back to neural networks…
■ Now that we have a concept of feedforward and feedback, 

and how single unit perceptrons work, let’s move on to 
combinations of units to multi-layer networks 

■ More details next time but main applications of ANN’s are  
Function fitting 
■ Fit this data without an equation!!! 
Classification 
■ blue cat or red cat?



Multilayer networks

■ Hidden nodes/layers - intermediate node layers 
which are NOT directly connected to the outside 
world (input or output)



Some typical network topologies

Single layer 
perceptron

Multi-layer 
perceptron

Hopfield 
network

Elman recurrent 
network

Competitive 
networks

Self-organizing 
maps



Other activation function concepts

■ Threshold 
■ Sigmoid 
■ Logarithmic 
■ Linear 
■ Many others



Neural networks in Python

▪ Tensorflow 
▪ Other tools 
▪ For next time



Neural Network Demos in matlab

■ In matlab  (you need the Neural Network Toolbox) 
nnd2n1  One-input neuron demonstration. 
nnd2n2  Two-input neuron demonstration. 
nnd4db  Decision boundaries demonstration. 
nnd4pr  Perceptron rule demonstration. 
nnd9sdq   Steepest descent for quadratic function 
demonstration. 
nnd11nf Network function demonstration. 
nnd11bc Backpropagation calculation demonstration 
nnd11fa Function approximation demonstration. 
nnd11gn Generalization demonstration.


