
COGS109: Lecture 14

Perceptrons, Threshold logic unit, Artificial Neural Networks
July 27, 2023

Modeling and Data Analysis
Summer Session 1, 2023

C. Alex Simpkins Jr., Ph.D.
RDPRobotics LLC | Dept. of CogSci, UCSD

Announcements

• New cape replacements logistics

• Assignments remaining A2, A3, D5, D6, D7, Q3, Q4, project

• Project checkpoint 2 EDA

• Project meetings to check in

But is there another way?

■ As cognitive scientists you might want to create a fit to very
nonlinear difficult data, and the methods we have used may have
difficulty
• Or model a system whose properties are not simple, or are difficult to define

■ You may want to model cognition and performance of large groups
of structure in the brain rather than just behavior
• Gosh I wish there was a model for these sorts of concepts…

There is! Artificial Neural Networks (A.N.N.’s)
■ A study of nature leads to a useful model

• Something about the organization of the structures of the
brain allows us to solve complex problems with ease, adapt
to new situations, and deal with large errors, incomplete
information and faults (brain injury)

• Artificial Neural Networks are an attempt to simulate by
mathematical means an idealized representation of the
basic elements of the brain and their
■ Functionality
■ Interconnections
■ Signal processing
■ Self-organization capabilities

Brief review of neuronal structures and
relation to ANNs

A simplified biological neuron Classic threshold logic unit

One neuron alone is not where the true
power lies
■ Electrical impulses travel along the axons and are

transmitted to other neurons via synaptic connections
■ If enough incoming pulses arrive in a particular neuron in

a given amount of time, the neuron fires, transmitting a
new electrical impulse down its axon

■ This is a fairly slow process (relative to computer
architecture) for a single neuron, but…

Why is a neural structure so powerful?

■ Massively parallel
Parallel vs. serial demo

■ Very fault tolerant
When you for example are writing a program and miss a .^ or
misspell a variable, that is a fault, brain is less sensitive to
that kind of thing since many neurons contribute to the
same computation

Why is a neural structure so powerful
(II)?
■ Low power consumption

Brain consumes orders of magnitude less energy than any
known digital technology for similar elementary operations
(logic, for example)

■ 10^11 neurons, and ~10^15 connections
Plasticity of the brain - adaptation of connectivity patterns
which allows us to learn
Compare 10^3-10^5 connections of each neuron to others
with ~10 for a digital logic circuit

■ Highly interconnected nature

The double-edged sword of A.N.N.’s

■ A.N.N.’s solve problems in very different ways from usual
computer programming

No series of precise instructions (program) for the machine
to execute
ANN is more adaptive, self-organizing progressively to
approximate the solution
■ Frees the problem solver from having to specify the steps to a solution
■ Also hides the steps to the solution, so you may not learn how a problem

is being solved by a person in an experiment for example, you can just
model it in a way that predicts the answer

Example - two volunteers, sentence comprehension

Look not for the panacea of modeling,
look for what’s useful for your purposes

■ (Panacea - a solution or remedy for all difficulties
or diseases)

■ So take-home message - as always with modeling,
use the ANN model with care, consider the
application and you are likely to gain many useful
insights using them

Mouse example

A.N.N.’s are best at…
■ ANN’s are best at problems where little or nothing is

known, so building a mathematical model is difficult, but
there happens to be a great deal of data is available

A.N.N.’s are data-driven
■ Some common applications of this type are

pattern classification
non-linear function approximation and system modeling
Control
associative memory
system prediction

The basics of Artificial Neurons

■ ANN’s are made of up many repetitions of the
same simple structure, artificial neurons

■ 1943, McCulloch and Pitts wrote a very influential
paper (which you will read) and introduced:

The Threshold Logic Unit (TLU) also known as a
Linear Threshold Gate

The threshold logic unit (TLU)
■ Takes real-valued inputs (e.g. 0.243 as opposed to 1 or 0

only), xi, each input associated with a “weight” wi (or
“synaptic weight”), which represents the contact between
two nerve cells

■ Performs a weighted sum of the x’s, and if the sum is
larger than a threshold (theta), the neuron outputs a 1,
otherwise a 0

■ The neuron will ‘fire’ if the threshold is exceeded,
otherwise it does nothing

Artificial Neuron Firing…

■ Neuron Activation is defined by the weighted
sum of

■ And whether the neuron fires is determined by

€

y(x) =
1 if wixi ≥θ,

i=1

n

∑
0 otherwise

⎧

⎨
⎪

⎩ ⎪

€

Activation = wixi
i=1

n

∑ = wT x

Perceptrons are more general than
TLU’s

■ So how is this useful?
Since it can output a 0 or
1, a perceptron alone can
perform many logical
operations
AND, OR, NOT
■ Demos
Combined with more than
one TLU, you can have
continuous functions,
since output of one can
be weighted input to
another

How does it ‘learn?’
■ The idea is that the perceptron is ‘trained’ by beginning with a

guess for the weights, giving it an input, it generates an output
(0 or 1), then that is compared with the desired output, and the
weights are updated according to some rule

i.e. - if it was wrong, change the weights so next time it will be
‘less wrong’
think about our discussions of error criteria

■ After the training period, it should respond to certain inputs
with reasonable outputs

■ Guess what is a popular algorithm for updating the weights?
Yep, gradient descent - usually modified to be conjugate gradient
to help with convergence

Perceptron learning rule

1. Initialize weights and threshold randomly
2. Present an input vector to the neuron
3. Evaluate the output of the neuron
4. Evaluate the error of the neuron and update the weights

according to :

1. Where d is the desired output, y is the actual output of the
neuron, and is a parameter called the step
size

5. Go to step 2 for a certain number of iterations or until the
error is less than a pre-specified value€

wi
t+1 = wi

t +η(d − y)xi

€

η(0 <η <1)

■ Computing "and":
‘And’ review
There are n inputs, each either a 0 or 1. To compute the logical "and" of
these n inputs, the output should be 1 if and only if all the inputs are 1.
This can easily be achieved by setting the threshold of the perceptron to n.
The weights of all edges are 1. The net input can be n only if all the inputs
are active.

■ Computing "or":
‘Or’ revieww
It is also simple to see that if the threshold is set to 1, then the output will
be 1 if at least one input is active. The perceptron in this case acts as the
logical "or".

■ Computing "not":
‘Not’ review
The logical "not" is a little tricky, but can be done. In this case, there is
only one boolean input. Let the weight of the edge be -1, so that the input
which is either 0 or 1 becomes 0 or -1. Set the threshold to 0. If the input is
0, the threshold is reached and the output is 1. If the input is -1, the
threshold is not reached and the output is 0.

Limitations of a single neuron
■ XOR problem -

build a perceptron which takes 2 boolean inputs and outputs the XOR of them. What we want
is a perceptron which will output 1 if the two inputs are different and 0 otherwise.
Consider the following perceptron as an attempt to solve the problem

•If the inputs are both 0, then net input is 0 which is less than the threshold (0.5). So the output is 0 - desired output.
•If one of the inputs is 0 and the other is 1, then the net input is 1. This is above threshold, and so the output 1 is obtained.
•But the given perceptron fails for the last case

Input Input Desired
Output

0 0 0
0 1 1
1 0 1
1 1 0

Never fear, we can make more!

■ That’s why combining more than one makes
neural networks more general for solving
problems

Generic PLA code (not using neural
network toolbox or module)
■ Original TLU’s did not have learning rule -

weights had to be designed
■ 50’s Rosenblatt’s main contributions were the

perceptron learning rule
■ Demo/explanation

Binary classifier

Limitations of a single neuron
■ XOR problem -

build a single layer, single unit perceptron which takes 2 boolean inputs and outputs the XOR
of them. What we want is a perceptron which will output 1 if the two inputs are different and
0 otherwise.
Consider the following perceptron as an attempt to solve the problem

Input Input Desired
Output

0 0 0
0 1 1
1 0 1
1 1 0

•If the inputs are both 0, then net input is 0 which is less than the threshold (0.5). So the output is 0 - desired output.
•If one of the inputs is 0 and the other is 1, then the net input is 1. This is above threshold, and so the output 1 is obtained.
•But the given perceptron fails for the last case

Limitations of single layer perceptrons (II)

■ Widely publicized in the book Perceptrons [MiPa69] by Marvin
Minsky and Seymour Papert

■ It was not until the 1980s that these limitations were overcome with
im- proved (multilayer) perceptron networks and associated learning
rules
• The funding and thus literature for ANN’s slowed to a crawl until then!

How do we resolve this?
■ Feedforward multilayer networks

Simple implementation

Computational capability

Input-output data

No feedback (signals only travel
forward)

■ It can be shown that by connecting
together multiple TLU’s in a two
layer network we can solve the XOR
problem

Implements two linear decision
boundaries

An important concept…

■ Feedforward system

■ Feedback system

Feedforward-feedback example
■ Position control of a motor angle or human limb joint angle
■ Path planning
■ Feedforward has advantages and drawbacks

Main drawback - model is never perfect, and noise can cause
severe drift over time, leading to inaccuracies
■ Any small error in the model tends to cause massive inaccuracies
■ Any disturbances cause errors - noise or external inputs
Advantage - simplicity in computation and sensor requirements

■ Feedback has advantages of robustness and error correction

A common feedback example -
inverted pendulum control
■ People standing or walking can be modeled as inverted pendulums

Another example - robotics application

■ Big dog video

■ Littledog video

Back to neural networks…
■ Now that we have a concept of feedforward and feedback,

and how single unit perceptrons work, let’s move on to
combinations of units to multi-layer networks

■ More details next time but main applications of ANN’s are
Function fitting
■ Fit this data without an equation!!!
Classification
■ blue cat or red cat?

Multilayer networks

■ Hidden nodes/layers - intermediate node layers
which are NOT directly connected to the outside
world (input or output)

Some typical network topologies

Single layer
perceptron

Multi-layer
perceptron

Hopfield
network

Elman recurrent
network

Competitive
networks

Self-organizing
maps

Other activation function concepts

■ Threshold
■ Sigmoid
■ Logarithmic
■ Linear
■ Many others

Neural networks in Python

▪ Tensorflow
▪ Other tools
▪ For next time

Neural Network Demos in matlab

■ In matlab (you need the Neural Network Toolbox)
nnd2n1 One-input neuron demonstration.
nnd2n2 Two-input neuron demonstration.
nnd4db Decision boundaries demonstration.
nnd4pr Perceptron rule demonstration.
nnd9sdq Steepest descent for quadratic function
demonstration.
nnd11nf Network function demonstration.
nnd11bc Backpropagation calculation demonstration
nnd11fa Function approximation demonstration.
nnd11gn Generalization demonstration.

