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• New cape replacements logistics



Plan for today
• Announcements 

• Review of last time 

• Project checkpoint 2 EDA 

• Optimization 

• Gradient descent 

• Conjugate gradient 

• Machine learning



Announcements

• New cape replacements logistics 

• Assignments remaining A2, A3, D5, D6, D7, Q3, Q4, project



Checkpoint 2: EDA



What can we do with this idea of error?

■ We now can quantify differences between model and reality 
■ Gives us a criterion for choosing and creating models 
■ What do I mean by this?   

• Let me pose the question - How can we fit a model 
which is nonlinear in the parameters? 
■ Least squares won’t work! 
■ Could linearize for the parameters…but what about cases where 

that is too difficult?



Optimization for regression problems which are 
nonlinear in the parameters

■ Optimization - the study of problems where the goal is to minimize or 
maximize a function by strategically choosing values for a set of variables 
• This is typically an iterative process, though in many 

cases one can solve for the optimal point of the 
function 

• Convex Optimization [Boyd] 
• https://web.stanford.edu/~boyd/cvxbook/ 

• Numerical Optimization [Nocedal and Wright] 
• http://users.iems.northwestern.edu/~nocedal/book/num-opt.html 

https://web.stanford.edu/~boyd/cvxbook/
http://users.iems.northwestern.edu/~nocedal/book/num-opt.html


Optimization is a popular way to study the human 
brain, behavior and computation

■ There is a tremendous amount of interest in optimization and 
optimality in general in fields studying human cognition and 
behavior, such as Cognitive Science 
• For model fitting in general 
• But also because it is intuitive to understand many 

aspects of human behavior in terms of optimization



How does this relate to behavior and cognition?

■One popular model group used by cognitive science relates decision processes to 
minimization of cost and maximization of rewards (behaviorism) 

“I’m hungry, I need to eat” ->this hunger instinct and the dislike of 
discomfort leads us to make choices to minimize hunger, unless 
another cost/reward outweighs that choice 

You drive on the correct side of the road because you don’t want 
to have a head on collision with another car, or get a ticket 
because either of those would be a cost 

■Motor control (control of movement) 
Many aspects of human sensorimotor system are optimal in some 

sense (specifics vary, but examples are energy expenditure/
recovery, time to goal, obstacle avoidance)



Additional practical applications
• Optimal control in human movement,  
• Optimization of energy usage in society,  
• Optimizing storage in hard drives to make information faster to access,  
• Optimization in education to improve human learning, 
• Optimization in sports to improve performance (power lifting, running, 

swimming, jumping, throwing, etc) 
• Optimization in design to create objects that have reduced wind resistance, 

are stronger, lighter, less expensive, use cheaper or less impactful materials 
• Optimization in network traffic to make cell phones work 
• Optimization for traffic flow in vehicles 



You have already performed some optimization in 
this class

■ Least squares 
• However in that case you could compute the optimal 

point (which is the minimum of some error function) 
• In that case the cost function was a quadratic 

function (shaped like x^2), but it isn’t always 
■ Sometimes there are many minima (we call those local minima) 
■ It may be difficult to compute all the minima, or any for that 

matter



Graphical view of function minimum
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Today we’ll discuss approximate solutions

■ Works when you CAN’T easily solve the equations exactly (which is 
VERY frequent in nonlinear systems such as the brain, behavior, 
motor control, speech processing/synthesis/comprehension, 
perception, and more cognitively relevant topics)



Remind me again, what exactly are we ‘minimizing’ or 
‘maximizing?’

■ Minimize cost 
■ Maximize reward 
■ We decide what that function is (‘cost function’ or ‘reward function’) 

• Then have some unknown constants  

• Then we use these methods to find the constants 

• Those constants give us the smallest cost or largest 
reward function 
■ Can be then interpreted as the ‘best fit’ given a definition of what 

‘goodness’ is



Graphical example - evolving organisms optimize cost, 
maximize rewards

http://www.karlsims.com/evolved-virtual-creatures.html

https://youtu.be/RZtZia4ZkX8


What’s one way to do this?
■ Start with our simple question - how do we fit a model which is 

nonlinear in the parameters? 

■ We can use optimization methods to intelligently minimize the error 
between model and data

<latexit sha1_base64="6PjJjB6HrAEVkhnGMrttj2L26GY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIsgCCVRUS9C0YvHCvYD0lg22027dLMbdjfSEPozvHhQxKu/xpv/xm2bg7Y+GHi8N8PMvCBmVGnH+bYKS8srq2vF9dLG5tb2Tnl3r6lEIjFpYMGEbAdIEUY5aWiqGWnHkqAoYKQVDG8nfuuJSEUFf9BpTPwI9TkNKUbaSF56jUYn5DELRuNuueJUnSnsReLmpAI56t3yV6cncBIRrjFDSnmuE2s/Q1JTzMi41EkUiREeoj7xDOUoIsrPpieP7SOj9OxQSFNc21P190SGIqXSKDCdEdIDNe9NxP88L9HhlZ9RHieacDxbFCbM1sKe/G/3qCRYs9QQhCU1t9p4gCTC2qRUMiG48y8vkuZp1b2ont2fV2o3eRxFOIBDOAYXLqEGd1CHBmAQ8Ayv8GZp68V6tz5mrQUrn9mHP7A+fwBAupE/</latexit>

y = ax+ e

bx



Nelder-mead simplex method
■ Built into python’s scipy, and matlab’s optimization 

toolbox 

■ Simple to implement 

■ How does it work? 
• https://docs.scipy.org/doc/scipy/reference/generated/

scipy.optimize.minimize.html#scipy.optimize.minimize 

•  Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. 
Wright, "Convergence Properties of the Nelder-Mead 
Simplex Method in Low Dimensions," SIAM Journal of 
Optimization, Vol. 9 Number 1, pp. 112-147, 1998. 

https://upload.wikimedia.org/wikipedia/commons/7/72/An-
iteration-of-the-Nelder-Mead-method-over-two-dimensional-
space-showing-point-p-min.png

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize


So the  Nelder-Mead Simplex method
■ It’s the built-in nonlinear function minimization routine in Matlab, 

built-into scipy in scipy.optimize.minimize() 

■ fminsearch() in matlab 

■ One of the most widely used methods of unconstrained nonlinear 
optimization 

■ Published in 1965 
• J. A. Nelder and R. Mead, A simplex method for function minimization, Computer 

Journal 7 (1965), 308–313. 
• See linked page on website for (short) collection of NM papers

http://www.apple.com


What does NM do?
■ Uses a simplex (a polytope in N+1 vertices in N dimensions) 

• A line segment on a line 
• A triangle on a plane 
• A tetrahedron in 3d space, etc 

■ Finds an approximate locally optimal solution to a problem with N 
variables (if the objective function varies smoothly) 

■ https://www.youtube.com/watch?v=j2gcuRVbwR0

https://www.youtube.com/watch?v=j2gcuRVbwR0


What does a simplex look like?

1D ->line 2D ->triangle 3D ->tetrahedron

•Think of it as an N-Dimensional triangle

•“simplest possible polytope (a polytope is a geometric object with flat sides) in any 
given dimension”[wikipedia]

•For specifics, start by reading mathworld and wikipedia definitions of simplex and 
related important details like convexity and convex hulls:

•http://en.wikipedia.org/wiki/Simplex

•http://mathworld.wolfram.com/Simplex.html 

https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Flat_(geometry)


How does NM use the simplex?
■ Let’s see - first consider the following challenging 

objective function we want to minimize over the variables 
x and y (this is a typical test problem for optimization algorithms)

Why is this challenging?
Note the long narrow 
valley.  That makes it 
tough to find the 
global minimum with 
an optimization 
algorithm

A.k.a. - 
Rosenbrock's 
valley or 
Rosenbrock's 
banana function.



Let’s take a look at the NM simplex 
algorithm in action
■ The NM algorithm trying to minimize the Rosenbrock function:

https://en.wikipedia.org/wiki/File:Nelder-Mead_Rosenbrock.gif

https://en.wikipedia.org/wiki/File:Nelder-Mead_Rosenbrock.gif


NM computes the simplex, and 
compares points
■ If one is worse (higher) on the cost (objective) function, the 

simplex reflects that point about the centroid (generalized 
center) of the simplex and thus makes a new simplex which 
is hopefully better 

■ If the points are close in their value the simplex shrinks 
■ If the points are far away in their value (steep slope) the 

simplex expands 
■ See the readings for details 

Intro - wikipedia link 
Original 1965 paper 
Convergence properties paper

http://www.apple.com


Let’s look at another function

■ Himmelblau’s function
■ Global Minimum 

f (3,2) = 0

■ Local Minima: 
f (-3.78, -3.28) = 0.0054
f (-2.81, 3.13) = 0.0085
f (3.85,-1.85) = 0.0011

■ In this case, multiple 
minima exist



How does NM approach this?
■ NM finding local minimum of Himmelblau function



A few quick notes that are 
important



Convexity and convex problems

■ Convex functions have one global minimum and no 
additional local minima 
• They can still be hard to minimize though - like for 

the Rosenbrock function 
• There exist many techniques which rapidly 

converge to the solution of convex functions

Error

Parameter

Convex



Non-convexity and local minima
■ Non-convex functions may have multiple local minima 

which are not anywhere near the global minimum 
• For example, the Himmelblau function 
• What can we do? 

■ Many strategies - it’s hard to know what is the absolute global 
minimum when you can’t explicitly compute it 
• Can restart with multiple different initial conditions and see 

if you get the same minima 
• Global optimization is a whole branch of mathematics 

where one attempts to find deterministic algorithms 
guaranteed to converge to globally optimal solutions in 
finite time  

■ Take home message - use any algorithm with caution 
and awareness

Error

Parameter

Non convex



Smooth vs. Non-smooth problems
• Smooth is much easier - derivative is continuous everywhere 

• Also

Error

Parameter

Error

Parameter

Smooth Non-smooth



Constrained vs. Unconstrained
• Constrained optimization - Process of optimizing some function with respect to some 

variables subject to constraints on those variables 

• Constraints may be given that we need to satisfy may berange of values, boundary, 
rules such as shape of differentials, etc 

• Usually boundary - Equality or inequality constraints, such as: 
• (source: https://en.wikipedia.org/wiki/Constrained_optimization#:~:text=In%20mathematical%20optimization%2C%20constrained%20optimization,of%20constraints%20on%20those%20variables.) 

• Unconstrained optimization - solve the optimization function, no constraints or range 
imposed

https://en.wikipedia.org/wiki/Constrained_optimization#:~:text=In%20mathematical%20optimization%2C%20constrained%20optimization,of%20constraints%20on%20those%20variables


Why not just compute all the minima of a function 
over all the space of interest?

■ You might not know the function! 
• Think if I told you to find the lowest part of campus 

blindfolded and with your ears and sense of smell 
somehow ‘disabled’ 

• You’d have to feel your way there, you couldn’t predict 
the final lowest point, if you had no prior knowledge



What if you know the function?

■ It might be that you know the function but it’s unreasonable to 
calculate all the minima 
• Too computationally expensive! 

■ you’d have to compute the function at n points, and if it’s an m-dimensional function 
(ie we have m parameters to find), m being big and n being big, you would have to 
compute n^m points 

■ e.g. - 10D, 100pts would be 100^10=1e20 computations of the function 
■ Comparison - our computers presently are on the order of 10^9 computations per 

second (GHz), so assuming in one cycle we can compute the function, which isn’t 
true, but for the sake of argument, consider that even this would take 10^11 
seconds 
• This is 3.1710e+03 years!!!  Oops:) 

■ There has to be a better way!!!  And we can use search to do it in a few computations



Example of application in python

• https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.minimize.html#scipy.optimize.minimize 

• https://machinelearningmastery.com/how-to-use-nelder-mead-
optimization-in-python/#:~:text=The%20Nelder%2DMead
%20optimization%20algorithm%20can%20be%20used%20in
%20Python,initial%20point%20for%20the%20search.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize


One common theme in optimization is trying to find 
a minimum

■ Sometimes we don’t need to deal with nonlinearity, and as such can 
use search methods which are specifically designed/optimized for 
such problems 

■ Skiing - you want to get to the bottom of the hill as fast as possible 
to get the hot chocolate 
• Obvious approach is to choose the direction of steepest descent down the 

mountain 

■ Leads us to  
• Gradient descent (a.k.a. the method of steepest descent) 
• Do exactly what we just said



How does gradient descent work (an introduction)?

■ Start with the cost function 
• Make it (hopefully) quadratic so it has the nice bowl shape, and a 

definite global minimum (though complicated functions may have local 
minima) 

• We want to find a way to make  
■ Mp-k = something as small as possible 
■ So we’ll start at some guess for p, then change p at each step to be going 

‘down the hill’ of the cost function

€ 



The algorithm
■ Algorithm: 

Choose a starting point p(0) 
• Repeat this until we’re satisfied that we’re close 
▪ Compute the distance to change the vector p 
▪ Compute the direction to change the vector p 
▪ Update p 

• Goto repeat 

■ It turns out that the steepest direction and step distance is found by 
looking at the ‘gradient’ of the cost function



What does the resulting behavior look 
like?

■ In 2d for convex function 
■ Most basic form 

■ In 2d for nonlinear function with 
multiple start points, another form 
■ https://en.wikipedia.org/wiki/

File:Gradient_Descent_in_2D.webm

https://en.wikipedia.org/wiki/File:Gradient_Descent_in_2D.webm


About the Nelder-Mead Simplex 
algorithm
■ So we showed examples of the NM algorithm and 

implementation details in python or matlab



Before we go on, a few definitions

■ Positive definite matrix 
All eigenvalues are positive 

■ Symmetric matrix (review) - symmetric about the 
diagonal 



We also introduced the gradient descent method

■ Intuitive algorithm - go ‘downhill’ for the parameters in the objective 
function you want to minimize 

■ Useful for 
• Solution of a large linear system of equations 
• Solution of a nonlinear systems of equations 

■ Special note - some Artificial Neural Network Algorithms use gradient descent on 
the weights (more on this later) 

• Optimization and control of dynamic systems



How does the gradient descent 
algorithm work?
■ Consider first the objective of gradient descent 

You want to get to the bottom of the hill 
Start somewhere, then you ski down the hill

Start here, 

Then move 
towards the 
minimum

*

*



How do we do this mathematically?

■ We want to minimize (A is assumed symmetric positive 
definite) 

■ We do this by starting with some initial guess for our 
parameters, and then ‘skiing’ downhill along the direction r 
with some ‘speed’ alpha at each iteration k 

■ So we’ll proceed iteratively toward the minimum of J(x) 
We want to move down the opposite of the gradient of J



Computing the gradient of J(x)

■ r at iteration k is given by taking the gradient of 
J(x) with respect to x 

■ With the gradient of J computed by

Note that
Since A is symmetric 
positive semi-definite

So now we have the direction to move at iteration k…



Computing alpha

■ We have to determine the step size (distance to go) 
at the iteration k 

■ We will compute the alpha at iteration k that 
minimizes



After a little work, we find alpha…

We can divide here because 
these are all scalars (one 
number)

The minimum 
occurs at 0



So finally we have each part…

■ Given an initial condition, we can iteratively head 
towards the minimum of a function J 

We compute the direction r and step size alpha at 
each k 
If we have a small enough error between Ax-b, we 
stop 
Or we stop if we’ve iterated too many times, as a 
convergence check



But…
■ There are issues with this method 

when the objective function is more 
challenging - with very steep sides 
and long flat valleys (poorly 
conditioned) 

■ This method also is a bit inefficient 
since it must ‘tack’ back and forth at 
90 degree increments 

Due to successive line minimization 
and lack of momentum from one 
iteration to the next 
THERE HAS TO BE A BETTER WAY!!!



THERE IS - Conjugate Gradient Descent 

■ When you ski, you don’t instantaneously tack back 
and forth, you have some momentum from the 
previous moment leading you to the next 

■ With a slight modification to the previous method 
we can arrive at a method that doesn’t get hindered 
by long narrow valleys



How CG improves over steepest 
descent
■ Instead of minimizing over a single alpha, which does one 

direction at a time for that iteration, we minimize our 
function in every direction simultaneously while only 
searching in one direction at a time 

In other words, to converge in exactly m iterations to the 
answer, we should minimize over all the steps we’ll take at 
once 
 (ie we can think of this as minimizing in m directions 
simultaneously) 

■ We can do this in any number of search directions 
Prevents that ‘tacking’ phenomena exhibited by the gradient 
descent method



How it’s done…

■ We can reduce this problem to minimizing each 
direction individually provided the different 
directions are independent of each other, or 
conjugate in the following sense  

■ We can choose our p’s so they are conjugate in the 
following way



Solving in m iterations

■ Consider that we start with our initial guess x_0, 
then move to our solution, x_m 

■ Substitute that into J, then compute the partial 
derivative with respect to each alpha, set that equal 
to zero



What does it boil down to?

■ We compute a sequence of p’s which are conjugate 
We redefine the descent direction at each iteration 
after the first to be a linear combination of the 
direction of steepest descent r and the previous 
descent direction



The result - an improvement

Steepest descent Conjugate 
gradient



Many types of optimization - a whole field
• Golden section 

• Gradient-based methods 

• NM simplex 

• Newton’s method 

• Bisection 

• Many others



In summary
• Optimization is an interesting way to understand and model the world as well as 

solutions to difficult problems 

• Numerical optimization provides tools for finding parameters for functions we 
could otherwise not solve for and that fail in simple regression type cases  

• At times it provides a tool that is more efficient than solving the problem if solvable 

• There are many approaches from simple to complex 

• Simple solutions like NM and CGD are very practical  

• Reading: https://scipy-lectures.org/advanced/mathematical_optimization/
index.html#smooth-and-non-smooth-problems

https://scipy-lectures.org/advanced/mathematical_optimization/index.html#smooth-and-non-smooth-problems

