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Plan for the lecture

• Finish up discussion of least squares 

• Mention optimization and initial motivation 

• Error analysis 

• Further curve fits (interpolation) - from linear to Lagrange to Splines



Upcoming deadlines
• http://casimpkinsjr.radiantdolphinpress.com/pages/

cogs109_ss1_23/assignments.html 

• Tonight Proposal/CP1 

• Friday - A1, D4, Q3 

• Sunday - CP2: EDA 

• Next Tuesday A2, D5, D6

http://casimpkinsjr.radiantdolphinpress.com/pages/cogs109_ss1_23/assignments.html


What if we want to fit something like this?
• This is not linear in the parameters, and it could be difficult to approach using 

linear least squares! 

• Might want to ask - do we reallllly need all these terms like this?!? 

• But don’t worry, we have methods to approach this - Optimization! 

• Coming up in another lecture, just starting to motivate it
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Another SDSC example: the orion nebula 
animation



Today we’ll develop methods of nonlinear 
interpolation and extrapolation

• Lagrange 
– Useful for low number of data points 
– Unstable for high numbers of data points 

• Splines 
– There are many kinds discussed in the reading, we’ll just 

discuss one today 
– Good overall method 
– Works with many or few data points



Lagrange interpolation/extrapolation

• Fit a polynomial of degree that is the same as the number of points 
– If n points, degree of polynomial is n 

• Makes a curve that exactly passes through all data points 

• Use only for small number of data points



Lagrange derivation
• In nonlinear interpolation, we can fit an (n-1)st order curve exactly through n 

data points  

• This is the lowest order curve, since an [n-1]st order polynomial will have 
exactly n parameters  

• This technique is especially useful in cases with very few data points.  

• For large numbers of data points, above a few, it is more appropriate to 
use some form of cubic spline interpolation where a curve is fit through 
each pair of points.  

• Lagrange PDF





Splines are useful in many places Lagrange fails

• Large number of data points 
• Also can make a curve that passes through all data points  

– some types do not enforce this 
• Drawn from drafting who drew from classical fine woodworking 

– Thin piece of wood stretched between pegs to create curves 
– Many types of splines dependent on end conditions 

• Pull tightly on the spline, curve gets sharper about the data points



Splines are useful for N-Dimensions



Splines also give you control over the final 
outcome of the curve



Some types of splines
• Natural cubic spline 

• Quadratic B-Splines 

• Hermite Cubic Splines 

• Coons Cubic Splines 

• Rational B-Splines 

• NURBS (Non-Uniform Rational B-Splines)



What we will discuss

■ Natural cubic splines 
Why cubic? 
■ Because a curve is ‘wiggly’ and this is the lowest order 

polynomial that satisfies the conditions we’re going to lay 
out 

■ Higher order gets too oscillatory



Natural Cubic Spline - a conceptual 
introduction

■ We construct the following curves in sections



Adding constraints to solve for the 
unknowns
■ Continuity at the joints:

Curve exactly connects the points

Curve also has continuous 
derivatives at the joints 



Natural Cubic Splines

■ We fit another parametric curve (similar to LERP), 
with a value of t from 0-1 again and make the ith 
segment according to 

■ And we solve for each set of these constants by 
requiring continuity at the end points (one section 
smoothly flows into the next, and the slope must match 
as well) 



Back to error analysis

• We need to assess the quality of 
our fit 

• Is this any ‘good?’



Uncertainty

■ Error does not mean, in science, mistake 
It means the level of uncertainty in measurements 
and calculations 
Can’t eliminate by being careful, must instead 
minimize them 

■ Basically want to have an estimate which is as 
reliable as possible 

‘keep an eye on’ your uncertainty



Impossibility of certainty

• No physical quantity can be measured with absolute certainty 
– Wood door example 

• Mathematical approximations to real systems are ALWAYS 
approximations, no matter how good 
– Any model you make is ONLY an approximation and should NEVER be 

confused with the real system 
• Wrong: “The Brain is computing the inverse of this matrix”
• Right: “Our model approximates what the brain is doing by computing the inverse 

of this matrix”



The question…

• The question is not whether you are right or not 

• The question is whether your approximation is good enough to be 
useful, dependent on what you consider to be ‘good enough’



Computing the estimated error

• One way to assess how good your model is consists of computing 
an estimated error 
– Typically you then decide whether your error is ‘within 

bounds’  
• (you create a boundary, such as the error in measuring/predicting 

position of a limb in space must be less than 10 inches)  

• Uses one of many possible methods



Different error estimates
• There are many ways to estimate errors, here are a couple of 

common ones 
– To get a single # - can use various norms  

• 2-norm 

• Mean-squared-error 

– Curve - simple error (for a time dependent signal y(t) ) 

– Curve - prediction error 
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We’ve already developed several 
models and methods!

■ Least squares is a very common method of fitting a 
model 

Works by minimizing an estimate of modeling error  
Linear model, nonlinear model 

■ Linear and nonlinear methods of interpolation  are 
models of data approximation 

Computes curves which exactly pass through data 
points or use the data to control aspects of the curve 
LERP, BERP, TERP, SLERP, Splines and lagrange



Different ways of modeling based on 
data
■ Record all your data, then create a fit and study the 

resulting model 
■ Record all your data, split the recorded data into 

different groups  
use one group to fit a model 
then the other to check and see how well does your 
model predict what the system does (this is called 
model validation - or ‘invalidation’)



Example from the last few classes of 
computing error
■ Approximation of              using the various methods 

we know already 
■ I generated simulated data by computing y=exp(x) for 

a domain of [0, 1]at three points (0.0, 0.5, 1.0) 
Then I created a linear least squares fit, a quadratic 
least squares fit, and Lagrange fits€ 

y = ex



Assessing the models
■ I assess how well each model fit does by first plotting the 

error between the data and the different methods 
■ Then I plot the real function (or data) vs. the different 

methods along a continuous curve







We can also compute the error as a 
single quantity
■ e2lls = 125.7192 

■ e2nlls = 10.9367 

■ e2lag = 86.3331 
■ From this we see that over this interval, the nonlinear least squares 

polynomial fits the data the best if we’re trying to minimize this error as 
a criterion for goodness of fit 

■ Again it depends on our criterion, as the lagrange has the lowest error 
over the domain of data used for computing the fit 

It doesn’t extrapolate the future points as well in this case


