
COGS109: Lecture 10

Regression, interpolation and extrapolation introduced
July 20, 2023

Modeling and Data Analysis
Summer Session 1, 2023

C. Alex Simpkins Jr., Ph.D.
RDPRobotics LLC | Dept. of CogSci, UCSD

Models and the modeling
process

Linear least squares

■ You're probably all familiar with linear regression
-- fitting a line to a bunch of data.

■ more formally fitting y = mx + b for paired x,y
data (can also do multidimensional)

■ Let’s see how it’s done mathematically

Let’s start by considering an easier
question…
■ We have 2 points, and want to fit a line to them
■ (1,2) , (3,4)
■ How would you solve this problem?
■ We want y=mx+b (we need m and b)

Substitute each point in

€

2 = m(1) + b
4 = m(3) + b

Example continued

■ And solve for b first, then m

€

b = 2 - m

4 = 3m + 2 - m
4 = 2m +2

€

m =1

b = 2 -m
b =1

Example continued

■ We have two equations and two unknowns (m, b)
■ This can be written compactly as

■ Which is of the basic form

■ We want to find
€

1 1
3 1
⎡

⎣
⎢

⎤

⎦
⎥
m
b

⎧
⎨
⎩

⎫
⎬
⎭

=
2
4
⎧
⎨
⎩

⎫
⎬
⎭

€

Ax = b

€

x = A−1b

Solving Ax=b
■ Solving for involves computing the inverse of the A

matrix
Insiwhatsitz? Don’t worry…inverses are a way to make life easier

■ There are several methods, and you can solve for arbitrarily sized
problems (ie what if we want to find 100 variables? Not fun by hand:
(Let’s use a computer to do it for us!!!:)

Gaussian elimination (what you learned in linear algebra class)
■ Don’t worry you won’t have to do it by hand in this class!
Thomas algorithm, etc (and other more efficient methods
computationally)
Python has gaussian elimination (and others) built-in nicely of
course through numpy modules

€

x = A−1b

We need to remind ourselves of matrix inversion
■ What is an inverse of a matrix?
■ Rotation example

If a vector is rotated by multiplying it by a rotation matrix, then
multiplying the rotated vector by the inverse rotates the vector
back to its original orientation
Side note - a matrix times its inverse yields the identity matrix
■ You can test for a matrix being the inverse of another matrix by multiplying the two, and

see how close do you get to the identity matrix?

Look up more of the definition details…see references on site
■ Homework problem, one matrix plot is an example…which could it be? Hmm…what

special matrices have we just mentioned? Hmmm…how could I IDENTIFY this
matrix? Hmmm…

■ Dating example

€

AA−1 = I

€

A−1A = I

€

AI = A

€

IA = A

Solving Ax=b

■ We compute the solution of our canonical problem
by

Recall
that…

How to solve Ax=b in matlab
■ In python/numpy this can be solved for with the “numpy.linalg.lstsq” method
■ Returns the least squares solution to a linear matrix equation

■ https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html
roughly the same as INV(A)*B
computed in a different way.
■ If A is an N-by-N matrix and B is a column vector with N components, or a matrix with several such

columns, then A = np.linalg.lstsq(X,B) is the solution to the equation A*X = B computed by a
method that depends on the input matrices.

■ Doing it in python:

 (https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html)

https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html

Custom colormaps and pcolor

Outline for this section
■ Colormap implementation
■ What is interpolation?

Definition
Applications, motivation for use
Orion nebula simulation

■ LERP - Linear interpolation
■ BERP - Bilinear interpolation
■ TERP - Trilinear interpolation
■ SLERP - Spherical linear interpolation in polar

coordinates
■ Examples

Creating color maps - review and
expansion
■ What if I want to examine the boundaries of my

data?
I only want to see the extremes
We can create a custom color map!

Creating the color map (r,g,b)
components

■ To create a custom color map we need to make a matrix which
is Dim nx3, range [0,1]

■ Each column is the range of either red, green, blue
■ Writing it by hand:

■ Typing it into a python variable:
 M = ?

€

M =

0 1 0
0 0 0
0 0 0
0 0 0
1 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Now what?

■ We create our plot, let’s create some data nd plot it using pcolor:
■ https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pcolor.html
■ https://matplotlib.org/stable/gallery/images_contours_and_fields/

pcolor_demo.html#sphx-glr-gallery-images-contours-and-fields-pcolor-demo-py

•Matlab
•peaks(50)
• pcolor(X)
•colormap(M)

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pcolor.html
https://matplotlib.org/stable/gallery/images_contours_and_fields/pcolor_demo.html#sphx-glr-gallery-images-contours-and-fields-pcolor-demo-py

Here’s what we get…

■ As you can see this can
be very useful for
feature detection

■ But let’s say we want
to make a smooth map,
how do we do that?

Creating smooth color map
functions

■ Instead of typing the matrix in manually, let’s construct the functions we
need to make transitions smooth from one color to the next

■ Create many values in between 0 and 1
■ Two things of note

The length of your colormap array is up to you, the
more numbers and the smaller the transitions, the
more smooth the colors look (crayons vs. airbrushing)
The colors are mapped so the

 range(0,1) -> range(min(data), max(data))

Looking at smooth transitions
■ Comparison after matching

the number of values in the
simple color variation (1 ->
0) vs. a smooth function
from 1->0

■ Uses the equation…
(for Decreasing:)

€

r = exp(−x)
x = 0 : .01:10 Index #

The final smooth color map
■ And equations:

Decreasing:

Increasing:

€

r = exp(−x)
x = 0 : .01:10

€

g =
exp(x)

max exp(x)[]
x = 0 : .01:10

Results of our custom color map

<- Using the built-in ‘hot’ color map

Using our color map->

Other plots vs. custom color maps

■ Grayscale?

■ Compressed?

Python implementation…

■ To python…

Consider again an old question
■ Suppose I have just performed a brain

imaging study where I recorded MRI and
EEG data of subjects while they performed
cognitive tasks and they had to perform a
motor task (controlling a cursor with a
joystick)

■ The EEG is sampled at 2kHz (2000
samples/sec)

■ The joystick and computer screen updates at
60Hz

■ The MRI updates at approximately 1Hz
■ How do I analyze this data in light of the

fact that there are three very different
sample rates?

Answering the question…

■ I could up-sample the motor data
■ But what if I want a smooth curve between points,

and I know that the human does not inject
significant disturbances between points?
•We don’t want to do least squares because we want
something to pass exactly through all data points!

•I could fit a curve that goes through all the data points

Interpolation defined

■ Given a set of data points, we can construct a
curve which fits exactly through each datapoint

Given this set of
datapoints

We want to fit a curve, or
piecewise fit curves
which pass exactly
through each point

What can you do with this?
■ Match data sampled at different rates
■ Create surface plots with varying resolutions (mip-mapping

for example with texture mapping)
■ Create algorithms which store simplified representations of

functions like sine, exponentials, etc (a lookup table), and
when faced with points in between the stored values, the
algorithm can interpolate between them

Simplifies computation time
■ Create algorithms which take small amounts of data and

interpolate to build models in an optimal way to make
decisions based on

Linear interpolation (“LERP”)

?

P0

P1
We use a parametric curve to blend
between the two points:

In 3D:

Often this is written in the more
efficient form:

There are less computations, only
compute P1-P0 once per pair of points

Bilinear interpolation (“BERP”)

■ Substituting the first two into
the third:

Thus given 4 points, we can find an interpolated point anywhere in
the space between them

Trilinear interpolation (“TERP”)
■ How might you derive

this such that we can
interpolate to any point
inside this cube?

Same as LERP and BERP
but a third interpolation
parameter (another
dimension)

The points do NOT have to be evenly spaced

An important note about interpolating…

■ By interpolating, you are not truly creating new
data, you are blending between existing data

■ Use with caution, since significant things might be
happening between sample points if your data is
too spread apart

Spherical linear interpolation(“SLERP”)

■ Let’s say we have two vectors we want to interpolate between:

(x0,y0,z0)

(x1,y1,z1) In case the angle = π
(180o) we get a zero
length set of vectors
by our other
interpolation
method!

V0 V1

SLERP continued
■ We need a circle in 2D with the center at the origin that

passes through both vectors, and we’ll interpolate over
angle between the vectors, not length of the vectors

This is from the
definition of dot
products

V0 V1

Solve for theta by
taking inverse
cosine of both
sides, and noting:

SLERP (II)
■ Now we can use the same interpolation equation, but with

angles…we need to use a sine of the angle we’re
interpolating, since we’re rotating about a circle:

■ Now as Tau goes from 0-1, our vectors are interpolated from
V0 to V1

■ So we compute the angle between the vectors by the dot
product equation (with the cosine inverse from the prev. slide)

