COGS109: Lecture 5

‘ ¥
"’ ~\' \
.' ‘ | y\ ' ‘

Filtering I,
July 13, 2023

Modeling and Data Analysis
Summer Session 1, 2023
C. Alex Simpkins Jr., Ph.D.

RDPRobotics LLC | Dept. of CogSci, UCSD

Plan for today

e Announcements
e Review of last time
e |ecturet
e Review - Sampling, discretization and filtering
e Loading files examples, some details about making it work
o ASCII
e Binary
e \Visualizing and confirming the data, basic slicing in Pandas
e Some more on filtering and filtering issues
e |ecture?2
e Perceptually aware visualization

Announcements

e Discussion of groups, repos and timing
e github repos
* groups

A1, D3

 Checking in on paper review

Review and discussion of last
time

Quick review- Data structures

e Structured data
e Semi-structured data

e Unstructured data

Types of data files (low level format)

 But how do we encode files in 1’s
and Q’s?

* Files can typically be classified into
two different formats

o ASCII (“Text”)
* Binary
* STL example
* Brain.STL (ASCII| - 52MB)
* Brain.STL (BINARY - 9MB)

Decimal - Binary - Octal - Hex — ASCII
Conversion Chart

Decimal Binary Octal Hex ASCII Decimal Binary Octal Hex ASCII Decimal Binary Octal Hex ASCII Decimal Binary Octal Hex ASCII
0 00000000 000 00 NUL 32 00100000 040 20 SP 64 01000000 100 40 @ 96 01100000 140 60
1 00000001 001 01 SOH 33 00100001 041 21 ! 65 01000001 101 41 A 97 01100001 141 61 A
2 00000010 002 02 STX 34 00100010 042 22 “ 66 01000010 102 42 B 98 01100010 142 62 b
3 00000011 003 03 ETX 35 00100011 043 23 4 67 01000011 103 43 C 99 01100011 143 63 c
4 00000100 004 04 EOT 36 00100100 044 24 $ 68 01000100 104 44 D 100 01100100 144 64 d
5 00000101 005 05 ENQ 37 00100101 045 25 % 69 01000101 105 45 E 101 01100101 145 65 ©
6 00000110 006 06 ACK 38 00100110 046 26 & 70 01000110 106 46 F 102 01100110 146 66 f
7 00000111 007 07 BEL 39 00100111 047 27 ‘ 71 01000111 107 47 G 103 01100111 147 67 g
8 00001000 010 08 BS 40 00101000 050 28 (72 01001000 110 48 H 104 01101000 150 68 h
9 00001001 011 09 HT 41 00101001 051 29) 73 01001001 111 49 | 105 01101001 151 69 i
10 00001010 012 OA LF 42 00101010 052 2A * 74 01001010 112 4A J 106 01101010 152 6A |
11 00001011 013 OB VT 43 00101011 053 2B+ 75 01001011 113 4B K 107 01101011 153 6B k
12 00001100 014 0C FF 44 00101100 054 2C 76 01001100 114 4C L 108 01101100 154 6C |
13 00001101 015 oD CR 45 00101101 055 2D - 77 01001101 115 4D M 109 01101101 155 6D m
14 00001110 016 OE SO 46 00101110 056 2E : 78 01001110 116 4E N 110 01101110 156 6E n
15 00001111 017 OF Sl 47 00101111 057 2F / 79 01001111 117 4F O 111 01101111 157 6F 0
16 00010000 020 10 DLE 48 00110000 060 30 0 80 01010000 120 50 P 112 01110000 160 70 p
17 00010001 021 11 DC1 49 00110001 061 31 1 81 01010001 121 51 Q 113 01110001 161 71 q
18 00010010 022 12 DC2 50 00110010 062 32 2 82 01010010 122 52 R 114 01110010 162 72 r
19 00010011 023 13 DC3 51 00110011 063 33 3 83 01010011 123 53 S 115 01110011 163 73 S
20 00010100 024 14 DC4 52 00110100 064 34 4 84 01010100 124 54 T 116 01110100 164 74 t
21 00010101 025 15 NAK 53 00110101 065 35 5 85 01010101 125 55 U 117 01110101 165 75 u
22 00010110 026 16 SYN 54 00110110 066 36 6 86 01010110 126 56 Vv 118 01110110 166 76 Vv
23 00010111 027 17 ETB 55 00110111 067 37 7 87 01010111 127 57 W 119 01110111 167 77 w
24 00011000 030 18 CAN 56 00111000 070 38 8 88 01011000 130 58 X 120 01111000 170 78 X
25 00011001 031 19 EM 57 00111001 071 39 9 89 01011001 131 59 Y 121 01111001 171 79 y
26 00011010 032 1A SUB 58 00111010 072 3A 90 01011010 132 5A Z 122 01111010 172 7A z
27 00011011 033 1B ESC 59 00111011 073 3B 91 01011011 133 58 [123 01111011 173 7B {
28 00011100 034 1C FS 60 00111100 074 3C <« 92 01011100 134 5C \ 124 01111100 174 7C |
29 00011101 035 1D GS 61 00111101 075 3D = 93 01011101 135 50] 125 01111101 175 7D}
30 00011110 036 1E RS 62 00111110 076 3E > 94 01011110 136 5 A 126 01111110 176 7~
31 00011111 037 1F UsS 63 00111111 077 3F ? 95 01011111 137 5F _ 127 o1111111 177 7F DEL

-
source: https://bournetocode.com/projects/GCSE Computing Fundamentals/pages/3-3-5-ascii.htm|

https://bournetocode.com/projects/GCSE_Computing_Fundamentals/pages/3-3-5-ascii.html

How to load text files in Python

* Depends on the file type (generic or specific)

» https://www.geeksforgeeks.org/reading-writing-text-files-python/

* Python can load either generic text or binary files

* open () function

e NO special module needed File object = open(r"File Name","Access Mode")
* very similar to C

* Add that ‘r’ if the file is not in the same folder as the script/current
directory in order to make the string raw and avoid processing
special characters

https://www.geeksforgeeks.org/reading-writing-text-files-python/

| oads a file into ‘primary memory’ or RAM

Secondary memory Is your nonvolatile storage

It successtul, returns a file ‘handle’ that allows
you to then access that memory

Pay attention to the mode it is opened in (r, r+,
W, W+, a, a+)

other operations:

* file_handle.close()
e file_handle.write()
e file_handle.read()

* more...(e.q. https://www.geeksforgeeks.org/
reading-writing-text-files-python/)

Open function to open the
file "MyFilel.txt"

(same directory) in append
mode and

filel =

open ("MyFilel.txt",6 "a")

} store its reference in the
variable filel

and "MyFile2.txt" in D:\Text
in file2

file2 = open(r"D:\Text
\MyFile2.txt","w+")

https://www.geeksforgeeks.org/reading-writing-text-files-python/

File access modes using open()

1 Read Only (°r’) : Open text file for reading. The handle is positioned at the beginning of the file. If
the file does not exists, raises the /O error. This is also the default mode in which a file is opened.

2 Read and Write (‘r+’): Open the file for reading and writing. The handle is positioned at the
beginning of the file. Raises I/O error if the file does not exist.

3 Write Only (‘w’) : Open the file for writing. For the existing files, the data is truncated and over-
written. The handle is positioned at the beginning of the file. Creates the file if the file does not
exist.

4 Write and Read (‘w+’) : Open the file for reading and writing. For an existing file, data is truncated
and over-written. The handle is positioned at the beginning of the file.

5 Append Only (‘a’): Open the file for writing. The file is created if it does not exist. The handle is
positioned at the end of the file. The data being written will be inserted at the end, after the
existing data.

6 Append and Read (‘a+’) : Open the file for reading and writing. The file is created if it does not
exist. The handle is positioned at the end of the file. The data being written will be inserted at the

end, after the existing data.

Source: https://www.geeksforgeeks.org/reading-writing-text-files-python/

https://www.geeksforgeeks.org/reading-writing-text-files-python/

| oad various files using Pandas

o https://pandas.pydata.org/pandas-docs/stable/reference/io.html
-+ pd.read_csv('data.csv')
- pd.read_table(‘data.csv’)

e A bit simpler?

https://pandas.pydata.org/pandas-docs/stable/reference/io.html

How to load text files in Matlab/Octave

* Import wizard menu (also works for matlab binary files)
* Demo

* M=xlsread(‘filename’)
» Reads an excel spreadsheet file and stores it into a matrix of your choosing (here it’s M)

* Load filename .ext

» loads the data in the ASCII text file filename.ext (where .ext is the extension of the filename,
such as .txt)

* Octave documentation: https://docs.octave.org/latest/Simple-File-
1_002f0.html

https://docs.octave.org/latest/Simple-File-I_002fO.html

Binary files and .mat files

* A more efficient way to store files generally is binary format
* Smaller

« But...Less platform independent - ie need to know exactly what the
format is to read the file

« Can’t load these files into just any text editor like you can with ASCII
* [mage files are examples of binary

* Matlab stores a binary format with the extension .mat

* Python and Pandas can read/write binary files fairly simply as well

* Have to choose carefully what techniques you use - with large files the
slower approaches might not work due to being too slow or memory
intensive

Tidy data == rectangular data

A
A B C D E
1 id sex glucose insulin triglyc
2 101 Male 134.1 0.60 273.4
3 102 Female 120.0 1.18 243.6
4 103 Male 124.8 1.23 297.6
5 104 Male 83.1 1.16 142.4
6 105 Male 105.2 0.73 215.7

https://doi.org/10.7287/peerj.preprints.3183v1

Data wrangling vs. data cleaning

eData wrangling focuses on transforming the data from a ‘raw’ format
iInto a format suitable for computational use

eData cleaning focuses on, as discussed, fixing/removing incorrect,
corrupted, incorrectly formatted, duplicate, incomplete, data within a
dataset

| oading binary files in Python

* One approach (https://stackoverflow.com/questions/16573089/reading-

binary-data-into-pandas)

* [here are many ways to do this

» Often you will work with standardized formats or formats that provide

tools if from a commercial systenr
* Not always

 Knowing how binary files and text fi
functions and low level python func

es work as well as both simplifyi

lons allows you to work with any

g

hing

https://stackoverflow.com/questions/16573089/reading-binary-data-into-pandas

Non-standardized binary data

e S0 some file you know the structure

* Data acquisition, image file (there would be a module normally though),
other arbitrary type

- Need documentation for how the bytes encode the data

 Typically either just a sequence of numbers and you have to know the
order ofr...

* A tile with a header then body, header specifies the rest

* A series of records consisting of a header (identifying info) and the
record one after the other

o https://towardsdatascience.com/loading-binary-data-to-numpy-
pandas-9caa03eb06/2

https://towardsdatascience.com/loading-binary-data-to-numpy-pandas-9caa03eb0672

Continuous vs.

* |nformation storage

- Continuous signals
have information at
every point 1n time

- Discrete signals
have info only at
specified intervals
(fixed or variable)

Discrete quantities

maghitude

-05F

II II
05}

0F

time {sec)

The function sampled at discrete points

1 L (‘-’\:-) | (‘:\\:)
0S5F
®
=
=
T ¢ 9
2
E A
05+
o O
O O
- QO W QO
0 3 4 S B 7 o 10

Examples of continuous and discrete systems

e Continuous or discrete?

—# of people 1n this class eDiscrete
—# of Time zones eiscrete
—Time eContinuous
—Answers on multiple choice tests *Discrete
—A Sound eContinuous

—Body temperature eContinuous

Analog vs. Digital quantities

* Information storage
- Analog contains infinite information

- Digital contains limited information, depending on the
number of bits of information the digital value can store

0 or 1in each bit means each bit multiplies the
possible combinations of numbers by 2

e 2N\4 = 0-15 (a 4-bit number, 16 different values)
e 2N\8 = 0-255 (an 8-bit number, 256 different values)

e 2N16 = 0-65535 (a 16-bit number, 65536 different
values)

More on digital quantities

Measuring an EEG bolls down to recording a sequence of numbers into
computer memory, stored in values of a specific size, such as 8 bit numbers.

- 1.e. signal is 0-5V, digitized with 8 bit precision would yield a resolution of
5V/256 = 0.020V, or 20mV (mV = ‘milli-Volts’)

- Resolution - defined as the smallest quantity which can be reliably measured
- Digital Precision - The number of bits of information contained 1n a digital
quantity
Also iImportant for computations
- Round off errors can accumulate
e Example
- 2.245+3.432+1.234 = 6.911
- 2+3+1 = 6, and that’s only 3 samples! Imagine 1000/sec (1kHz) |

- More on this |later

Discretization

 Measuring a continuous (analog) signal means capturing
information at specitied (fixed or variable) intervals

- Sampling frequency - the frequency at which data is recorded from a
signal (Typically in Hz, 1e 5SkHz)

 \WWhen capturing data, or when manipulating data which has been
discretized, there are several iIssues to consider

- Aliasing (not the TV show:)
- Sampling rates

- Post-processing — filtering data to remove unwanted information
while retaining desired information

Sampling

 Sample - We record data at specific points
N time s, S(t)

* Period - The time between samples, T [sec]

9 10111213 ¢

-

01 ..1 45 6 7 8

 Sample frequency - The frequency of
sampling, f[Hz]

https://en.wikipedia.org/wiki/Sampling_%28signal_processing%29

Nyquist and Sampling

. Nyquist frequency
o Stories
- Running in the dark with periodic lights on the o 1
ground, with sharp turns " 2AT

- Ping pong (no sound, periodic view of the system)

e As a rule of thumb, you must sample AT LEAST twice
as fast as the highest frequency you want to measure
- Nyquist frequency - max freq. that can be measured [Hz]
- Nyquist rate - sampling frequency (which 1s 2x the

nyquist frequency) required to sample at the nyquist
frequency

- 20 times as fast is better
- Filter out higher frequency components

[N SN NN N

IDVARVARVARVARV

What do we see 1n this picture?

1 / I I /'“ I I e T T e I T '\l
 Aliasing - the ol \ \ / \ / \ /
VARVARVARVARWV
1 2 3 4 S 6 7 g 9 10
roo, T I . o ’\\..... I I "’ I I "' I I ' ’ I

corrupting ot a signal .
by components of '
higher frequencies o
overlapping into the rrretrmrintrrrm e e
lower frequency NN NN

How do we solve this?

* Filter out the frequencies we don’'t want
- Low pass filter
- High pass filter

-xamples: Visual discretization

= Color shading

= Color and visual boundaries:

Few colors and low Low spatial High spatial
spatial resolution resolution only resolution and colors

Example: Sampling and Aliasing

= [he wheel spokes example...<Live demo>

NGBS

= We're sampling at too slow a rate to accurately see the spokes rotate, and at a particular
rotational velocity of the wheel, we see an ‘aliased’ reverse rotation!

*

Obviously aliasing can be bad...

= Allasing can lead to improper interpretations of data

So what do we do about it?

= \We must first sample at twice the rate of the tfastest
signal we care about

= Filter our data (humans do this, and so do cognitive
scientists!)

Thus we ftilter our data...

m Filter - an operation or process which alters input data according to some
mathematical relationship or heuristic rule to produce output data which 1s
more desirable

Filter

Input§ —e > QOutputs
process

Computational filtering

m Noisy auditory data can be filtered to remove undesired signals
m LEG signals can be filtered to remove 60Hz noise from AC lines nearby

m Other sensor signals can be filtered to improve results

-requency Response

= | inearity of systems vs. nonlinearity

= [he response of a linear system to a sinusoidal input is a
sinusoidal output with the amplitude and phase shifted in some

way
» <demo volunteer needed>

= This Is useful for characterizing the behavior of some signal
over a range of possible input frequencies

= Example with the chalk

Common filter types in signal processing

= Low-pass filter - (ideal) attenuates high frequency data,
while allowing low frequency data to pass unchanged

= High-pass filter - (ideal) attenuates low frequency data,
while allowing high frequency data to pass unchanged

= Band-pass filter - (ideal) attenuates all frequencies except
a particular frequency band (or bands)

= Band-stop filter - (ideal) attenuates one or a selection of
frequency ranges of data, allowing all the rest to pass
unchanged

= Actual filters are not exactly ideal...which we will discuss

Signals and noise...

By making assumptions about the properties of the unwanted ‘noise’
e(t), we can reconstruct an appropriate estimate of the original signal

s(Y)

Noise - any unwanted portion of a signal, lumped together. It may come from multiple
sources but tends toward some statistically predictable properties

Typical noisy signal

Ideal

S(t) signal \
+
C , Measured
signal
b

Amplitude (Volts)

time (sec) e(t) Noise

| ow-pass filtering

= S0 the effect is this
Typical noisy signal

(t+t))

r‘ Average point at t,

Amplitude (Volts)

Time (sec)

More on linearity vs. nonlinearity

= Power

A linear system is a system whose dependent variables are related to its
independent variables by a power of one

= Linear systems have these particular properties (and they are very
favorable)

Additive T[xl(n) + x5 (n)] = T[xl(n)] + T[.’Eg(n)ﬂ

Homogeneous [I'[cxz(n)| = cT[z(n)]

= Linear differential equations are more well-understood than nonlinear
differential equations

Fourler transtforms

= Fregquency domain example : Musical note vs. the sound

More parsimonious to describe a song in terms
of its notes than time domain signal (when
creating a ‘model’ for a song which can be
communicated)

We return to noisy data which we want to ‘clean up’

= We do this by removing undesired components of the signal
= One way to do this is averaging out the noise

= |f it's Gaussian and additive...

['his 1s gaussian noise,
and the average of this
1S approximately the
green line, 0

D+5=0

5 10 15 20 25 30 35
time (sec)

How 10 do It

Typical noisy signal

s Decide on a ‘window’ of data to
average over, which is narrower
than the fastest component to your
changing signal

" Average point at t_

Amplitude (Volts)

= Sum up over that window of points
and divide by the number of points
(average)

Time (sec)

Continuous form Discrete form
i+k

t+tg 1 |
o) = [alar e =gg 3 o0

—to _7:2—]‘6

A few detalls

= \What about at the ends of the data where we don’'t have information
before (at the beginning of the data set) or after (at the end of the

data set)?
Copy the first or last point and repeat as necessary

) z(j) = =(0),Vj <0
Wi ' 2
,mOWSlZeOf_ z(j) =z(n),Vj >n

|

Repeated Repeated
points Actual data points

Beginning of set End of set

Disadvantages...

= Need to have all data in memory already, so it isn't an ‘online’ filter

= Causality
If we care about an exact event timing, this is a poor filter to use:

\ Signal anticipates

\ changes!

Solution

 Recursive filter
e Solves causality issue

 Easy to Implement as we saw last time

Before we get Into writing the
filters, let's practice getting data

1 he gata

e | et's import the dataset

 Then let's look it over - how many points do we have”? What are our

variables” Is there a problem with the signal” Is there anything we
can do about it?

e <to the workbook>

