
Modeling and Data Analysis
Summer Session 1, 2023

C. Alex Simpkins Jr., Ph.D.
RDPRobotics LLC | Dept. of CogSci, UCSD

COGS109: Lecture 5

Filtering II,
July 13, 2023

Plan for today

! Announcements
! Review of last time
! Lecture 1
! Review - Sampling, discretization and filtering
! Loading files examples, some details about making it work
! ASCII
! Binary

! Visualizing and confirming the data, basic slicing in Pandas
! Some more on filtering and filtering issues

! Lecture 2
! Perceptually aware visualization

Announcements
• Discussion of groups, repos and timing

• github repos

• groups

• A1, D3

• Checking in on paper review

Review and discussion of last
time

Quick review- Data structures

• Structured data

• Semi-structured data

• Unstructured data

Types of data files (low level format)

• But how do we encode files in 1’s
and 0’s?
• Files can typically be classified into

two different formats
• ASCII (“Text”)
• Binary
• STL example
• Brain.STL (ASCII - 52MB)
• Brain.STL (BINARY - 9MB)

Extended ASCII table

source: https://bournetocode.com/projects/GCSE_Computing_Fundamentals/pages/3-3-5-ascii.html

https://bournetocode.com/projects/GCSE_Computing_Fundamentals/pages/3-3-5-ascii.html

How to load text files in Python
• Depends on the file type (generic or specific)
• https://www.geeksforgeeks.org/reading-writing-text-files-python/
• Python can load either generic text or binary files
• open() function
• No special module needed
• very similar to C
• Add that ‘r’ if the file is not in the same folder as the script/current

directory in order to make the string raw and avoid processing
special characters

https://www.geeksforgeeks.org/reading-writing-text-files-python/

Loads a file into ‘primary memory’ or RAM
• Secondary memory is your nonvolatile storage
• If successful, returns a file ‘handle’ that allows

you to then access that memory
• Pay attention to the mode it is opened in (r, r+,

w, w+, a, a+)
• other operations:

• file_handle.close()
• file_handle.write()
• file_handle.read()
• more…(e.g. https://www.geeksforgeeks.org/

reading-writing-text-files-python/)

Open function to open the
file "MyFile1.txt"
(same directory) in append
mode and
file1 =
open("MyFile1.txt","a")

store its reference in the
variable file1
and "MyFile2.txt" in D:\Text
in file2
file2 = open(r"D:\Text
\MyFile2.txt","w+")

https://www.geeksforgeeks.org/reading-writing-text-files-python/

File access modes using open()
1Read Only (‘r’) : Open text file for reading. The handle is positioned at the beginning of the file. If

the file does not exists, raises the I/O error. This is also the default mode in which a file is opened.
2Read and Write (‘r+’): Open the file for reading and writing. The handle is positioned at the

beginning of the file. Raises I/O error if the file does not exist.
3Write Only (‘w’) : Open the file for writing. For the existing files, the data is truncated and over-

written. The handle is positioned at the beginning of the file. Creates the file if the file does not
exist.

4Write and Read (‘w+’) : Open the file for reading and writing. For an existing file, data is truncated
and over-written. The handle is positioned at the beginning of the file.

5Append Only (‘a’): Open the file for writing. The file is created if it does not exist. The handle is
positioned at the end of the file. The data being written will be inserted at the end, after the
existing data.

6Append and Read (‘a+’) : Open the file for reading and writing. The file is created if it does not
exist. The handle is positioned at the end of the file. The data being written will be inserted at the
end, after the existing data.

Source: https://www.geeksforgeeks.org/reading-writing-text-files-python/

https://www.geeksforgeeks.org/reading-writing-text-files-python/

Load various files using Pandas

• https://pandas.pydata.org/pandas-docs/stable/reference/io.html

• pd.read_csv('data.csv')

• pd.read_table(‘data.csv’)

• A bit simpler?

https://pandas.pydata.org/pandas-docs/stable/reference/io.html

How to load text files in Matlab/Octave
• Import wizard menu (also works for matlab binary files)
• Demo

• M=xlsread(‘filename’)
• Reads an excel spreadsheet file and stores it into a matrix of your choosing (here it’s M)

• Load filename .ext
• loads the data in the ASCII text file filename.ext (where .ext is the extension of the filename,

such as .txt)

• Octave documentation: https://docs.octave.org/latest/Simple-File-
I_002fO.html

https://docs.octave.org/latest/Simple-File-I_002fO.html

Binary files and .mat files
• A more efficient way to store files generally is binary format
• Smaller
• But…Less platform independent - ie need to know exactly what the

format is to read the file
• Can’t load these files into just any text editor like you can with ASCII
• Image files are examples of binary
• Matlab stores a binary format with the extension .mat
• Python and Pandas can read/write binary files fairly simply as well
• Have to choose carefully what techniques you use - with large files the

slower approaches might not work due to being too slow or memory
intensive

Tidy data == rectangular data

Broman KW, Woo KH. (2017) Data organization in spreadsheets. PeerJ Preprints 5:e3183v1 https://doi.org/10.7287/peerj.preprints.3183v1

https://doi.org/10.7287/peerj.preprints.3183v1

Data wrangling vs. data cleaning

!Data wrangling focuses on transforming the data from a ‘raw’ format
into a format suitable for computational use
!Data cleaning focuses on, as discussed, fixing/removing incorrect,
corrupted, incorrectly formatted, duplicate, incomplete, data within a
dataset

Loading binary files in Python
• One approach (https://stackoverflow.com/questions/16573089/reading-

binary-data-into-pandas)

• There are many ways to do this

• Often you will work with standardized formats or formats that provide
tools if from a commercial system

• Not always

• Knowing how binary files and text files work as well as both simplifying
functions and low level python functions allows you to work with anything

https://stackoverflow.com/questions/16573089/reading-binary-data-into-pandas

Non-standardized binary data
• So some file you know the structure

• Data acquisition, image file (there would be a module normally though),
other arbitrary type

• Need documentation for how the bytes encode the data
• Typically either just a sequence of numbers and you have to know the

order or…
• A file with a header then body, header specifies the rest
• A series of records consisting of a header (identifying info) and the

record one after the other
• https://towardsdatascience.com/loading-binary-data-to-numpy-

pandas-9caa03eb0672

https://towardsdatascience.com/loading-binary-data-to-numpy-pandas-9caa03eb0672

Continuous vs. Discrete quantities

• Information storage
– Continuous signals

have information at
every point in time

– Discrete signals
have info only at
specified intervals
(fixed or variable)

Examples of continuous and discrete systems

• Continuous or discrete?
–# of people in this class •Discrete
–# of Time zones •Discrete
–Time •Continuous
–Answers on multiple choice tests •Discrete

–A Sound •Continuous

–Body temperature •Continuous

Analog vs. Digital quantities
• Information storage

– Analog contains infinite information
– Digital contains limited information, depending on the

number of bits of information the digital value can store
• 0 or 1 in each bit means each bit multiplies the
possible combinations of numbers by 2

• 2^4 = 0-15 (a 4-bit number, 16 different values)
• 2^8 = 0-255 (an 8-bit number, 256 different values)
• 2^16 = 0-65535 (a 16-bit number, 65536 different
values)

More on digital quantities
• Measuring an EEG boils down to recording a sequence of numbers into

computer memory, stored in values of a specific size, such as 8 bit numbers.
– i.e. signal is 0-5V, digitized with 8 bit precision would yield a resolution of

5V/256 = 0.020V, or 20mV (mV = ‘milli-Volts’)
– Resolution - defined as the smallest quantity which can be reliably measured
– Digital Precision - The number of bits of information contained in a digital

quantity
• Also important for computations

– Round off errors can accumulate
• Example

– 2.245+3.432+1.234 = 6.911
– 2+3+1 = 6, and that’s only 3 samples! Imagine 1000/sec (1kHz) !

– More on this later

Discretization
• Measuring a continuous (analog) signal means capturing

information at specified (fixed or variable) intervals
– Sampling frequency - the frequency at which data is recorded from a

signal (Typically in Hz, ie 5kHz)
• When capturing data, or when manipulating data which has been

discretized, there are several issues to consider
– Aliasing (not the TV show:)
– Sampling rates
– Post-processing – filtering data to remove unwanted information

while retaining desired information

Sampling
• Sample - We record data at specific points

in time

• Period - The time between samples, T [sec]

• Sample frequency - The frequency of
sampling, f [Hz]

<latexit sha1_base64="BjCilOVD6bd6AX7OoifRrQAJ04s=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVRIVdSMUdeGyQl/QlDKZ3rRDJ5MwMxFqCP6KGxeKuPU/3Pk3TtsstPXAhcM593LvPX7MmdKO820tLC4tr6wW1orrG5tb2/bObkNFiaRQpxGPZMsnCjgTUNdMc2jFEkjoc2j6w5ux33wAqVgkanoUQyckfcECRok2UtfeD668QBKaulnq3QLXBNeyrl1yys4EeJ64OSmhHNWu/eX1IpqEIDTlRKm268S6kxKpGeWQFb1EQUzokPShbaggIahOOrk+w0dG6eEgkqaExhP190RKQqVGoW86Q6IHatYbi/957UQHl52UiTjRIOh0UZBwrCM8jgL3mASq+cgQQiUzt2I6ICYMbQIrmhDc2ZfnSeOk7J6XT+/PSpXrPI4COkCH6Bi56AJV0B2qojqi6BE9o1f0Zj1ZL9a79TFtXbDymT30B9bnDwBslPE=</latexit>

f =
1

�T

https://en.wikipedia.org/wiki/Sampling_%28signal_processing%29

Nyquist and Sampling
• Stories

– Running in the dark with periodic lights on the
ground, with sharp turns

– Ping pong (no sound, periodic view of the system)
• As a rule of thumb, you must sample AT LEAST twice

as fast as the highest frequency you want to measure
– Nyquist frequency - max freq. that can be measured [Hz]
– Nyquist rate - sampling frequency (which is 2x the

nyquist frequency) required to sample at the nyquist
frequency

– 20 times as fast is better
– Filter out higher frequency components

Nyquist frequency
<latexit sha1_base64="/9smrIuQkEQ/lDcUjF146XGkw28=">AAACAHicbVBNS8NAEJ3Ur1q/oh48eFksgqeSVFEvQlEPHiu0tdCEstlu2qWbTdjdCCXk4l/x4kERr/4Mb/4btx8HbX0w8Hhvhpl5QcKZ0o7zbRWWlldW14rrpY3Nre0de3evpeJUEtokMY9lO8CKciZoUzPNaTuRFEcBpw/B8GbsPzxSqVgsGnqUUD/CfcFCRrA2Utc+CLviygslJpmbZ1XvlnKNUSPv2mWn4kyAFok7I2WYod61v7xeTNKICk04VqrjOon2Myw1I5zmJS9VNMFkiPu0Y6jAEVV+NnkgR8dG6aEwlqaERhP190SGI6VGUWA6I6wHat4bi/95nVSHl37GRJJqKsh0UZhypGM0TgP1mKRE85EhmEhmbkVkgE0a2mRWMiG48y8vkla14p5XTu/PyrXrWRxFOIQjOAEXLqAGd1CHJhDI4Rle4c16sl6sd+tj2lqwZjP78AfW5w8Jt5YO</latexit>

fn =
1

2�T

What do we see in this picture?

• Aliasing - the
corrupting of a signal
by components of
higher frequencies
overlapping into the
lower frequency

How do we solve this?

• Filter out the frequencies we don’t want
– Low pass filter
– High pass filter

Examples: Visual discretization
■ Color shading

■ Color and visual boundaries:

6 levels 256 levels

Few colors and low
spatial resolution

Low spatial
resolution only

High spatial
resolution and colors

Example: Sampling and Aliasing
■ The wheel spokes example…<Live demo>

■ We’re sampling at too slow a rate to accurately see the spokes rotate, and at a particular
rotational velocity of the wheel, we see an ‘aliased’ reverse rotation!

Obviously aliasing can be bad…

■ Aliasing can lead to improper interpretations of data
• So what do we do about it?
■ We must first sample at twice the rate of the fastest

signal we care about
■ Filter our data (humans do this, and so do cognitive

scientists!)

Thus we filter our data…
■ Filter - an operation or process which alters input data according to some

mathematical relationship or heuristic rule to produce output data which is
more desirable

Filter
process

Inputs Outputs

Computational filtering

■ Noisy auditory data can be filtered to remove undesired signals
■ EEG signals can be filtered to remove 60Hz noise from AC lines nearby
■ Other sensor signals can be filtered to improve results

Frequency Response
■ Linearity of systems vs. nonlinearity

■ The response of a linear system to a sinusoidal input is a
sinusoidal output with the amplitude and phase shifted in some
way

■ <demo volunteer needed>

■ This is useful for characterizing the behavior of some signal
over a range of possible input frequencies

■ Example with the chalk

Common filter types in signal processing
■ Low-pass filter - (ideal) attenuates high frequency data,

while allowing low frequency data to pass unchanged
■ High-pass filter - (ideal) attenuates low frequency data,

while allowing high frequency data to pass unchanged
■ Band-pass filter - (ideal) attenuates all frequencies except

a particular frequency band (or bands)
■ Band-stop filter - (ideal) attenuates one or a selection of

frequency ranges of data, allowing all the rest to pass
unchanged

■ Actual filters are not exactly ideal…which we will discuss

Signals and noise…
■ By making assumptions about the properties of the unwanted ‘noise’

e(t), we can reconstruct an appropriate estimate of the original signal
s(t)
• Noise - any unwanted portion of a signal, lumped together. It may come from multiple

sources but tends toward some statistically predictable properties

Ideal
signal

Noise

s(t)

e(t)

+

+

Measured
signal

Low-pass filtering

■ So the effect is this

More on linearity vs. nonlinearity
■ Power

• A linear system is a system whose dependent variables are related to its
independent variables by a power of one

■ Linear systems have these particular properties (and they are very
favorable)
• Additive

• Homogeneous

■ Linear differential equations are more well-understood than nonlinear
differential equations

Fourier transforms

■ Frequency domain example : Musical note vs. the sound
• More parsimonious to describe a song in terms

of its notes than time domain signal (when
creating a ‘model’ for a song which can be
communicated)

We return to noisy data which we want to ‘clean up’

■ We do this by removing undesired components of the signal

■ One way to do this is averaging out the noise

■ If it’s Gaussian and additive…

This is gaussian noise,
and the average of this
is approximately the
green line, 0

-5 + 5 = 0

How to do it
■ Decide on a ‘window’ of data to

average over, which is narrower
than the fastest component to your
changing signal

■ Sum up over that window of points
and divide by the number of points
(average)

Continuous form Discrete form

A few details
■ What about at the ends of the data where we don’t have information

before (at the beginning of the data set) or after (at the end of the
data set)?
• Copy the first or last point and repeat as necessary

Actual data
Repeated
points

Repeated
points

Beginning of set End of set

Window size of 2
Avg.
Pt.

Disadvantages…
■ Need to have all data in memory already, so it isn’t an ‘online’ filter

■ Causality
• If we care about an exact event timing, this is a poor filter to use:

Signal anticipates
changes!

Solution

• Recursive filter

• Solves causality issue

• Easy to implement as we saw last time

Before we get into writing the
filters, let’s practice getting data

The data

• Let’s import the dataset

• Then let’s look it over - how many points do we have? What are our
variables? Is there a problem with the signal? Is there anything we
can do about it?

• <to the workbook>

