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0.1 Nonlinear interpolation

0.1.1 Lagrange interpolation

In nonlinear interpolation, we can fit an (n-1)st order curve exactly through n data
points (this is the lowest order curve, since an [n-1]st order polynomial will have
exactly n parameters). This technique is especially useful in cases with very few
data points. For large numbers of data points, above a few, it is more appropriate
to use some form of cubic spline interpolation where a curve is fit through each pair
of points. Why exactly that is a problem will be explored in detail later. For now
let us begin by considering a polynomial

f(x) = an−1x
n−1 + an−2x

n−2 + ...+ a1x+ a0. (1)

This is simply the equation for a polynomial. Now we want to constrain this poly-
nomial equation to pass exactly through our n points

f(xi) = yi, i = 1, 2, ...n. (2)

Our unknowns are the a constants. We have n points (x, y pairs), and n unknowns
(the a’s). We can solve (??) for the a’s by substituting (??) into (??). This results
in

an−1x
n−1
1 + an−2x

n−2
1 + ...a1x1 + a0 = y1 (3)

an−1x
n−1
2 + an−2x

n−2
2 + ...a1x2 + a0 = y2

... = ...

... = ...

an−1x
n−1
n + an−2x

n−2
n + ...a1xn + a0 = yn

Or, writing this more compactly, we can write simply

an−1x
n−1
i + an−2x

n−2
i + ...a1xi + a0 = yi, i = 1, 2, ...n. (4)

Now we have n algebraic equations in n unknowns, which is a perfectly constrained
problem. We could simply solve this problem using Gaussian elimination or another
algorithm, but the problem becomes ill-conditioned for about n > 5. This makes it
difficult to solve these equations for the a’s accurately.



0.1. NONLINEAR INTERPOLATION 3

Another approach to solving for the a’s is to solve them in such a way as they are
linear combinations of the y’s.

f(x) =
n∑

k=1

ykLk(x) (5)

Where the Lk(x)’s are polynomials of degree n − 1. Recall that an equation for a
polynomial P is simply

P (x) =
n−1∑
k=0

akx
k (6)

and we want the polynomial to equal the y data points at those values of x. Thus,
we can make

Lj(xi) = δij, i = 1, 2, ...n, j = 1, 2, ...n (7)

where δ is defined as

δij =
{ 1 i = j

0 i 6= j
(8)

From algebra we recall that any polynomial of degree n can be factored into a
constant multiple of n factors (x − xp), where xp are the zeros of the polynomial.
Since Lj(xi) is a polynomial of degree n − 1 with known zeros (i 6= j), it has the
form

Lj(x) = Cj(x− x1)(x− x2)...(x− xn) (9)

We want to find Cj where i = j, so that Lj(xj) = 1

1 = Cj(xj − x1)(xj − x2)...(xj − xn) (10)

Which we solve by dividing both sides by (xj − x1)(xj − x2)...(xj − xn)

Cj =
1

(xj − x1)(xj − x2)...(xj − xn)
(11)

Now we substitute (??) into (??) to arrive at

Lj =
(x− x1)(x− x2)...(x− xn)

(xj − x1)(xj − x2)...(xj − xn)
(12)

Thus we can write out the solution in two parts

Li =
n−1∏

j=0,j 6=i

(x− xj)

xi − xj

(13)

y(x) =
n−1∑
i=0

Li(x)f(xi) (14)
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This reduces to y = f(xi) at all i vertex points. One very important note to make
is that the i 6= j in the L(x) equation. If it did, one would have a 1/0 situation,
which may cause numerical instability, and certainly would not pass through the
data points exactly.


