Splines and Other Curves
for Data Fitting

The word spline originally referred to the flexible wood or metal strips used by draftsper-
sons for drawing curves. These physical splines may be held in place with tacks or with lead
weights called ducks that are used with large splines in boat and ship design. In the past,
ship splines were laid out large loft rooms, and this drafting was called lofting.

The drawing at the top of this page shows vertical cross-section curves (ribs) for aca-
noe, along with a vertical line for the keel and two sheer lines. In chapter 12 these vertical
cross-section lines will be connected to produce a surface representation of the canoe in
three dimensions. Many of the curve types discussed in this chapter can be used to construct
“patches” to represent surfaces in space, as developed in chapter 12.

In this chapter we consider a half-dozen of the common types of curves used for de-
sign purposes. These and other curves are analyzed more thoroughly in specialized books;
see, for example, Bartels et al. (1987), Rogers and Adams (1990), and Farin (1990). One
type of curve discussed below, the Bézier curve, was developed for the design of Renault
automobiles.

Two general types of curves will be considered. The first type represents an inter-
polation between data points; the curve passes through each point. The second curve type
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150 Splines and Other Curves for Data Fitting Chap.7
atter case,

is an approximation curve; it passes through few, if any, of the data points. In this |
he curve,

the data points act as control points to shape the curve, rather than as points 07 the ¢

This chapter starts with a brief discussion of using high-order polynomials 10 fit data.
This procedure, often described in calculus textbooks, is not useful for de?“c’“ pur-
poses because the curve often has large oscillations between data points. Other mterpgla-
tion schemes—which are useful for design work—are a circular-arc fit, parabolic bief}dmg,‘
and the natural cubic spline. The natural cubic spline is the mathematical representaton of
the physical spline described above. Also in this chapter, various types of approximation
curves are analyzed: uniform quadratic and cubic B-splines, nonuniform (n onrational aqd
rational) B-splines of general order, general-order Bézier curves, and composite cubic
Bézier curves.

Although high-order polynomials are discussed in the first section and in the general
B-spline or Bézier cases, this chapter emphasizes curves that arc constructed with segments
described by second- and third-degree polynomials (quadratic and cubic cquations), with
the segments being connected at joints (also called knots). Note that the simplest curve fit
is the linear case, considered in chapter 3 as a polyline that joins data points with straight-
line segments.

The joints that connect curved-line segments may be classified according to the con-
tinuity of the derivatives at the joints. If the nth derivative is continuous at the joints, then
the overall curve is said to be C" continuous. The simple polyline is C? continuous because
values match at the joints, but first derivatives do not. The circular-arc fit and parabolic
blend are C' continuous, whereas the natural cubic spline is C? continuous. For the ap-
proximation curves, the quadratic B-spline and the composite cubic Bézier curve consid-
ered in this chapter have C! continuity, and the cubic B-spline is C? continuous.

7.1 HIGH-ORDER POLYNOMIALS

Consider » points at y; = f(x;), where the x; are monotonically increasing x-values. The fol-
lowing Lagrange interpolating polynomial of order n—1 passes through each of the n
points.

n—1

y= :E()Li(x)f(xi) (7.1

where

n—1
XX
Lxy= 11 —=
j=0j#i Xi~™Xj

Note that at a vertex point, say x = x, the polynomials L(x) will equal zero for all vertices
x; except for x; = xi, where Li(x) = 1. Therefore equation 7.1 reduces to y = f{x,} at the ver-
tex points x;.
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The formula (7.1) is readily implemented by the following subroutine. The coordi-
nates are in the units of screen pixels, and x is increased in steps of five pixels.

void highPolyFit (int n,double x[],double ¥I[1)
{

int i,3;

double =p,yp,L;

MoveTo((int) =[0], (int) ¥I[0]);
for (xp=x[0]; xp<x[n-1l+.1; Xp=xp+5.)
{
yp = 0.;
for (i=0; i<n; i++)
{
L = 1.;
for (j=0; J<n; j++)
{
if (§l=1i) L = L*(xp~-x[j])/ (x[il-x[j1);
}
yp = yp + L*yl[il;
}
LineTo( (int) =xp, (int) yp);

}

In the above listing, n points are passed to the subroutine by means of the arrays x[]
and y[] for the horizontal and vertical coordinates. These arrays have elements x[0] through
x[n—1]. A horizontal point xp is incremented by a small amount (here five pixels), and the
vertical coordinate yp is calculated from equation 7.1.

Although high-order polynomials pass through the vertex points, they usually oscil-
late too much between the vertex points. This result is not surprising because, for example,
xto alarge power n will increase rapidly when x is greater than unity. Figure 7.1 shows four
different interpolation curves that pass through six vertex points representing data in which
the first three points lie on a horizontal line and the last three points are on a higher (larger
y-value) horizontal line. For this case the high-order (Lagrange) polynomial is a fifth-order
polynomial.

The high-order polynomial shown as curve a in figure 7.1 oscillates widely between
vertex points. Even higher oscillations can occur for other vertex configurations. Obviously,
high-order polynomials are not suitable for approximating smooth curves in design appli-
cations. The other three curves in figure 7.1 interpolate the data in better ways.

A circular-arc fit (curve b) reduces to straight lines along the three colinear points at
the beginning of the curve, and also at the end of the curve. It produces an s-shaped curve
between the third and fourth vertex points.

Curve c in figure 7.1 represents a parabolic blend, which produces (between the third
and fourth vertices) an s-shaped curve with much less deviation from the straight-line slope
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Figure 7.1 Interpolation curves drawn for six vertex points (dots), with y plotted in the
vertical and x in the horizontal direction. Curves are shown for (a) a high-order polynomial
fit, (b) a circular-arc fit, (c) a parabolic blend, and (d) a natural cubic spline.

than the circular-arc curve. Although this gentler s-shape may be more pleasing, it produces
small oscillations in the curve between the other vertices (the deviation from the straight
lines between the first two vertices and the last two is too small to be evident in the figure).

The natural cubic spline is represented by curve d in figure 7.1. It oscillates more be-
tween the first three and last three vertices than does the parabolic blend, but it has a less
pronounced s-shape between the third and fourth vertices. Furthermore, the natural cubic
spline has C2 continuity (continuity of curvature) at the vertices, rather than only C' conti-
nuity like the circular-arc and parabolic-blend curves.

Figure 7.2 presents four approximation curves along with a polyline that connects the
same six vertices as shown in figure 7.1. These approximation curves satisfy convex hull
properties; for example, they all lie within the polygon that would be formed if a rubber
band were stretched around all of the vertex points in figure 7.2. Accordingly, there are no
oscillations in the curves between vertex points.

For approximation curves, the vertex points act as control points that attract the curve
even though the curve does not normally pass through the vertex points. The general Bézier
curve d is controlled at each point by all of the vertex points, whereas the other curves shown
are controlled by the nearest three or four vertex points on any part of the curve. Therefore,
for the general Bézier curve, a vertex point does not exhibit much Iocal control over curve
shape compared with the other three approximation curves. In figure 7.2 this lack of local con-
trol allows the curve to rise much more gradually between the lower and upper vertex points.

All of the curves in figures 7.1 and 7.2 are analyzed in this chapter.
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Figure 7.2 Approximation curves drawn for the same six vertex points shown in figure
7.1, with y plotied in the vertical and ¢ in the horizontal direction. Curve a is the uniform
quadratic B-spline; b the uniform cubic B-splinc; ¢ the composite cubic Bézier curve; and
d the general (here fifth-order) Bézier curve.

7.2 CIRCULAR-ARC CURVEHT

The interpolation curve fit used by AutoCAD consists of a pair of arcs drawn between each
pair of vertex points. Because two arcs are used between vertices, this procedure is often
called the biarc method. The biarc method was developed by Renner and Pochop (1981)
for use in the design of BMW automobiles.

Use of the Circular-Arc Fit in AutoCAD

Any polyline drawn in AutoCAD (with the PLINE command) can be changed into a circu-
lar-arc fit of the data (vertex) points by using the FIT option under PEDIT. As discussed in
chapter 3, polylines are edited as follows,

Command: PEDIT
select polyline: (select with mouse)
Close/Join/Width/Edit vertex/Fit curve/

Spline curve/Decurve/Undo/eXit <X>: F
Close/Join/Width/Edit vertex/Fit curve/

Spline curve/Decurve/Undo/eXit <X>: (RETURN)

The response of “F” for fit immediately turns the polyline into a circular-arc curve fit. The
curve may be changed back to a polyline by entering “D” for decurve.

After a polyline is drawn, the vertex points may be changed with the Edit vertex
command under PEDIT.

Close/Join/Width/Edit vertex/Fit curve/
spline curve/Decurve/Undo/eXit <X»: E
Next /Previous/Break/Insert/Move/Regen/
Straighten/Tangent /Width/eXit <N>: N
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When “E” is entered a X symbol appears at the first vertex. This X can be mO_Ved to the
next vertex by entering “N.” After progressing along the vertex points, the polyline can be
retraced in the opposite direction by inserting “P” for previous vertex. After selection, aver-
tex may be moved by entering “M,” after which you will be asked for the coordinates of
the new position. The edit vertex mode also permits new vertex points to be inserted when
“T” is entered. The new vertex will appear between the selected vertex and the next vertex
at coordinates specified under the insert option. .

Vertex points may be eliminated by using the “straighten” option in the edit vertex
mode. For example, the third and fourth vertex points on a polyline may be eliminated by
entering “S” for straighten when the X symbol is on the second vertex. Then the >< is moved
to the fifth vertex, where “G” for go is entered. This action eliminates the third and fourth
vertex points, and draws a straight polyline segment between the second and fifth vertex
points (the fifth vertex is now the third vertex in the new polyline).

Manufacturing constraints often restrict mechanical parts and other objects to designs
that have drawings consisting of straight lines and circular arcs. The crank arm drawn in
figure 7.3 illustrates that the circular-arc fit is efficient for drawing these iterns (this is the
same crank arm shown in figure 4.3). Five polylines are used to draw the entire crank arm:
one for the entire outside edge, one for the slot that has semicircular ends, and three for the
three circles.

Only eight points define the slot with semicircular ends. Because the circular-arc fit
draws a straight line between any three colinear points, only three points are required for a
straight line segment. Also, a circle is drawn through a closed polyline consisting of four
vertex points lying anywhere on the circle (note that one of the three circles in the figure
does not have all of its vertex points placed at opposite ends of diameters).

Because of the 75° angle in the crank arm, construction lines and circles were used
to locate many of the polyline points in figure 7.3; however, the number of resulting poly-
line vertex points needed to complete the drawing is remarkably small. Other parts would
be simpler to draw. For example, if the crank arm had a 90° angle, then the polylines could
have been drawn directly on a rectangular grid.

O

% Q) =

(2) (b)
Figure7.3 A crank arm drawn on AutoCAD with five polylines: (a) the polylines and ver—
tex points and (b) the polylines after the circular-arc curve fit.
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The warehouse ceiling structure shown in figure 7.4 was drawn with the circular-arc
fit command in AutoCAD. The graceful concrete ribs are arrayed around the supporting
columns, shown as filled squares in this plan view. First, one octant is drawn (figure 7.4a);
then it is mirrored across a 45° line; then the resulting quadrant is put into a polar array
around the column center; and finally all of the curves around one column are put into a
rectangular array to produce the desired number of columns in the final illustration. (Of
course, the BLOCK command could be used in place of the ARRAY command to save
memory.) Proper matching along the 45° mirror line is achieved by using the Tangent op-
tion while in the Edit vertex mode of the PEDIT command. The tangents of the first and last

\\

b
Figure 7.4 Concrete rib structure on the ceiling of a warehouse in Bologna, Italy, de-
signed by engineer Pier Luigi Nervi: (a) the use of tangent lines at the boundary points of
an octant drawn around a column and (b) the rib structure around six of the columns.
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points (X marks) of the top polylines in figure 7.4a are set at —45° ang 135°, respectivel
Similarly, the tangents at the first and last vertex points on the bottom polylines are set
+90° to match slopes when the first quadrant is put into a polar array.

Another drawing with the AutoCAD circular-arc fit is shown in figure 7.5. The cane
weave on the chair seat was drawn with the hatch pattern developed in section 3.4.

Y.
at

The Circular-Arc Curve-Fit Algorithm

To draw a pair of arcs between each vertex pair, you must insert a new vertex point between
each pair of data points. The RP (Renner-Pochop) method specifies the positions of the in-
serted vertices. This method also prescribes the curve tangents at each of the data points.

Consider n data points providing the coordinates (x;,y:) of n vertices V,, where the sub-
script i takes on values from 0 through n—1. A polyline through these points has n—1 seg-
ments, numbered 0 through n—2; sce figure 7.6.

The first step in the curve-fitting routine is the calculation of vectors tangent to the
curve at each of the vertices. Although in AutoCAD the user has the option of specifying
tangent directions, most often only the vertex points are given, with the algorithm deter-
mining the tangents. The RP method prescribes the tangent vector t; at vertex i as a weighted
average of the unit vectors ;- and e; on either side of the vertex. Weighting factors wy and
wi are functions of the segment lengths /- and /, and a shape factor s, with the value s =
— I being used by the AutoCAD Fit algorithm. Additional weighting factors A and B forin-
terior vertices depend on the unit vectors e, and e;», so the tangents at these vertices de-
pend on the four nearest polyline segments.

t; = Awpe;—| + Bwe; (1.2)
where
wp = [(1 + 8)i-1 + (1 — )], wy=[(1 + )i+ — s)li1] 13
1 . . 1 . .
ey = i ei-vi+ Limidl, € = f [ b+ 1] (7.4)
i1 ;

Equation 7.2 holds for vertices with indices from i = 1 through n—2. For the two ver-
tices adjacent to end points, i = 1 and i = n—2, the amplitude terms A and B each have the
value 1. For the interior vertices, i = 2 through n—3, the amplitudes are computed by the
following expressions.

A=lewi—el  B=lei —eid (7.5)

where the expressions within the absolute value symbols can be readily evaluated by for-
mulas for the unit vectors of the form given in equations 7.4.
The tangent vector t; at the first vertex is given by

to = 2(t; - ep)eg — t

= [wo + 2wicos(o; — oo)lep — wie)

(7.6)

where a1— 00 is the angle between the directions of the first two polyline segments, obtained
when equation 7.2 with i = 1 is used to expand the scalar product t;-eo. The tangent vector
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Figure 7.5 Bentwood armchair produced in 1870 by Gebriider Thonet. Redrawn on AutoCAD from
an illustration in The Modern Chair: Classics in Production, by Clement Meadmore, published by Van
Nostrand Reinhold Co., 1975.
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Figure 7.6 A polyline with eight vertex points Vy through V5. On the left, polyline segment
lengths /; and unit vectors e; are shown, and on the right the arc centers and radii are drawn.

at vertex i = n—1 is calculated by a formula similar to that in equation 7.6, except with €o.
to, and t; replaced by e,-2, t,—, and t,_».

The second step in the RP method is the calculation of the coordinates for the new
vertices that are added between each pair of data points. Figure 7.7 shows three curve seg-
ments from figure 7.6, illustrating two different types of geometry. The first geometry,
shown in 7.7a, arises when the tangent vectors t; and t;+ point to opposite sides of the seg-
ment (the figure shows a clockwise-turning polyline on the left and a counterclockwise
polyline on the right). For this geometry the added point appears at the intersection of the
lines that bisect the angles 2a = + (6; — ¢;) and 28 = * (g; — ¢;+1), which lie between the
tangent vectors and the polyline segment (the + sign in these angle relations is for the clock -
wise case, and the — sign for the counterclockwise case).

As discussed in section 2.4, an intersection point may be readily calculated for two
straight lines, which have equations of the form y = mx + b. The constants for the first line
are determined by the fact that the line passes through the point V; = (x,yi) and has a slope
m equal to tan(g+a) = tan{(¢;+0c)/2}, whereas the second line passes through V;.; =
(Xi+1.yi+1) and has a slope equal to tan(¢pi+1 =) = tan{(¢i+;+0;)/2}. The intersection point
for these two lines is obtained in the following form, after the tan() function is expressed as
sin()/cos(), and multiplication by cos() is carried out to eliminate the divergences associ-
ated with the tan() functions when the argument is +71/2; that is, the following expressions
hold for all orientations of the intersecting lines.

" calc2(yiv1 — yi) — so(xie1 — x)]
(sic2 — $2¢1)

Xint = X
(7.7
sitlcayirt = yi) = $axiv1 — 1))
(S]C2 - Ssz)

Vit = yi +

where ¢ = cos{(¢i+a)2}, s1 = sin{(¢pi+o)2}, c2 = cos{(gi+1+0)/2}, and 53 =
sin{(@i+1+a:)/2}.
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Figure 7.7 Geometry and nomenclature for calculating the coordinates of the added vertices and the
arc centers. The case of tangent vectors pointing to opposite sides of the segment is shown in (a) with
a clockwise-turning curve shown on the left, and a counterclockwise curve on the right. The diagram
in (b) shows the case of the tangent vectors pointing to the same side of the segment, with the curve
changing from clockwise to counterclockwise.
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The arcs shown in figure 7.7a are subtended by angles 2« and 2/3 at the arc centers.
Therefore, the right triangles in the figure provide the expressions

=_4 = (7.8)
" 2sin & 2|sin B|

where the variables d; and d, are the distances between the intersection point and the seg-
ment ends

dy = [ = X+ i = y1)2]12, dy = [t — xis1)2 + (Vine — Yie1)* ]2 (7.9)

Because the distances in equations 7.9 are positive, the computed radii are ensured positive
values because absolute values of the sine functions appear in equations 7.8.

The vector of length r; between (x;,:) and the arc center (x.1,ve1) 1S perpendicular to
the tangent vector t;, which lies in the direction ¢; to the horizontal. The vector of length
between (x;+1,yi+1) and the arc center (xc,y.2) is perpendicular to the tangent vector tiy,
which lies in the direction ¢;+;. Accordingly, the arc center coordinates may be calculated
from the following relations.

Xel = Xi — CCW Iy sinqb,-, Vel = yi + cew ry COS(pi (7.10)
Xc2 = X1 = CCW 1y Singyq, Y2 = Virit+ ccw ra COS@it1

In equations 7.10, the multiplicative factor ccw takes on the value -+1 for the counter-
clockwise case and the value —1 for the clockwise case.

The first arc is drawn from center (x.1,y.1) with radius ry, with the radius starting in a
direction perpendicular to t;; that is, 8y = ¢: — cew n/2, where again the cow factor takes
into account the clockwise and counterclockwise orientations. The first arc ends at fons =
Bsan + 20 The second arc starts at the angle on which the first angle ends, and is drawn to
subtend an angle 28 at (xc,ye2).

The second case to be considered is the geometry shown in figure 7.7b, where the tan-
gent vectors t; and t;.; point to the same side of the segment. The fitted curve along this
segment will change orientation between clockwise and counterclockwise turning. The first
step in calculating the position of the added vertex point is to determine the intersection
point of lines extending along the tangent vectors at the segment ends. The coordinates
(Xins, yine) OF this point are computed from equations 7.7, but with the arguments of the co-
sine and sine terms being equal to the angles of the tangent vectors; that is, ¢; = cos¢;;
§1 = Singi, c2 = Cos;+1, and s; = sing;+ 1.

The added vertex point (X, y) is measured along Bysecror, Which represents the bisec-
tor of the angle between the tangent vectors. Along this bisector there is only one appro-
priate distance d to the point (xm,ym) such that the arcs meet with the same slope, as shown
in figure 7.7b. Reference to the geometry in this figure shows that the triangle formed by
POINtS (XinssYint), (Xi,Y;), and (Xm,y) is similar to the triangle formed by (x;,, Yins), (X Yrs), and
(xi+1,yi+1). Therefore the following equality exists between the ratio of triangle sides:
d/d\ = d>/d. Thus, the distance d to the point (x,,y») may be calculated from the equation

d= (did))' 7.1
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Although for some orientations the bisector angle, Osisecrer, €quals the average of the
tangent angles, (@;+¢;+1)/2; for other orientations ¢; and/or ¢i+ must be increased by 7.
Instead of dealing separately with different orientations, one can alternatively calculate the
bisector angle from the positions of the arc centers relative to the intersection point. The
following result is obtained for the added vertex point coordinates.

Xm = Xint + dcosgbi.wcmr; Ym = Yint +d Singhi.wcwr (712)
where
Onisecor = 1[tan—1@———y’l’) + tan-leii—y—""—’)] (7.13)
2 i ™ Xint i+l Xint

The coordinates (x.1,y1) of the first arc center may be calculated from the top pair of
equations 7.10. Because the turning orientation changes for the second arc (and the param-
eter cow is determined by the first arc), the coordinates (xc2,yc2) are computed from the bot-
tom pair of equations in 7.10, but with the — sign changed to + in the x> equation and +
changed to — in the y.2 equation.

The two arcs may draw with angles starting at the data points and ending at the in-
serted vertex at (Xp,ym)-

First arc: Ostart = tanfl(?:%), Oona = tan-](ym — zcl)
i X Xy —
L m cl (714)
SeCOnd arc: Hsmri - tanv](&t‘]‘——ycg). Hend = tan_l(—————ym — yc'l)
X+l 7 Xe2 Xm — X2

The above equations, along with the function arc() from section 3.1, may be used to
write a program subroutine arcFit() that fits two circular arcs between each pair of n data
points. Because a number of different cases must be considered, the program subroutine
arcFit() is rather long, so it is given in appendix B as listing 7.1.

7.3 PARAMETRIC REPRESENTATION OF CURVES

All of the curves described in the rest of this chapter have the same type of parametric rep-
resentation. Consider the parameter 7, which starts with the value 0 at the vertex Vo, in-
creases to £ = 1 at vertex V, then to 7 = 2 at vertex Vo, ¢ = i at vertex V,, etc. With the
variable 7 as the parameter, a point in two or three dimensions is presented as the row vec-
tor (matrix) Q7). (Alternatively, column vectors may be used.)

Q1) = [x(7) ¥1)] for 2-D
QD) = [x(D) @) z()] for 3-D

Parametric representation in terms of the variable 7 provides a convenient way to
describe the curves, even when they have infinite slopes or tumn back on themselves. Note

(7.15)
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that a nonparametric representation such as y = y(x) requires special treatment when the
slope becomes infinite and when the curve doubles back to give multiple values of y fora
given x-value.

The curve data points are called vertex points and are designated by the vector Vi,

Vi=[x y] for 2-D
Vi=|x w gz for 3-D

Two-dimensional curves are illustrated in figure 7.8.

Itis convenient to transform to a new independent parameter ¢, which varies between
0 and 1 as the curve is traversed between each set of vertices V; and Vi.;. An appropriate
transformation is f = 7 — i, where i is the number of the vertex at the start of the curve seg-
ment. This is a uniform parametric representation, because ¢ varies over the same range be-
tween each pair of vertices. Uniform parametric representations are considered in sections
7.4-7.6, and nonuniform representions in section 7.7.

Because vector equations are used, there is no difference in the formulation of the
curve algorithms in two and three dimensions (this is an important benefit of the paramet-
ric representation). Although the following examples will be for two-dimensional cases, re-
sults for curves in three-dimensional space can be readily carried out by computing z(?) in
the same manner that the x(¢) and y(¢) coordinates are calculated.

(7.16)

Q@)

Figure 7.8 Parametric representation of a two-dimensional curve.

PARABOLIC BLEND

The curves developed in this section are produced by blending two parabolas, as illustrated
in figure 7.9 (see Rogers and Adams [1990] for a more detailed derivation, and also for a
generalized parabolic blend). The blended curve is shown as a dashed line between vertex
points V;and V... The four vertices, V;_; through V.., affect the shape of this dashed line
by means of the formula
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Figure 7.9 Configuration for parabolic
blending.

Qi) = Vi1 Fi(t) + ViFa(t) + Vi F3(t) + ViaaFa(t)

2 (7.17)
= 2 ViuFieoAD)
k=—1

in which the variable ¢ increases from O to 1 along the curve segment extending from the
point V; to the point V;.+. That is, for this interpolation scheme, the overall curve comprises
segments between the data points, which serve as joints or knots for the curve segments. In
each curve segment the parameter ¢ varies between O and 1.

In order to derive expressions for the functions Fi, F», F3, and F4in equation 7.17, the
individual parabolas shown in figure 7.9 are given the following parametric representations.

Riw) = [u? u 1][A]
S(vy=1[v?z v 1][B]

where [u2 u 1] represents a row vector (matrix) with three elements.
The first parabola is assumed to vary uniformly with the parameter u so that the points
Vi-1, V;, and V4 correspond to u values of 0, 1/2, and 1, respectively.

R(O)=V,=[0 0 1]{A]
R(1/2) = Vi=[1/4 172 1]|A] (7.19)
R(D=Vi =1 1 1][A]

The above equations can be written as a single matrix equation.

(7.18)

Vioi 0 0 1
V: | =14 172 1[iA] (7.20)
Vi+t 1 1 1

Inverting the first matrix on the right of equation 7.20 produces the following expression
for [A):
2 —4 =21V,
[Al=|-3 4 1} Vi (7.21)
1 0 0| Vit
The same procedure is followed for Si(v), which crosses the points V;, V.1, and Vs

at the values v = 0, 1/2, and 1. The following value is obtained for the matrix [B] of equa-
tion 7.18.
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2 -4 2l V;
[B]l=]-3 4 —1!|Vigy (7.22)
1 0 0}l Vit

The blended curve Q?) is obtained from Ri(#) and Si(v) by linear interpolation.
Qi) = (1-DR(w) + 18,(v) (7.23)

The blended curve vector Q«(r) appropriately reduces to R,(#) when ¢ = 0 and to $;(v) when
t = 1. That is, the blended curve will reach the values and the slopes of the individual
parabolas at each end of the curve segment.

Equations 7.18, 7.21, and 7.22 can be used to substitute for R{u) and S(v) in equation
7.23. The variables u and v are assumed to be linear functions of ¢. The linear expressions
below result when itis required thatat V, t =0, u = 1/2,andv = 0;and at Vi1, t = l,u =
1, and v = 1/2. (These values are consistent with the analysis above and with figure 7.9.)

= %(1 +n,  v= %t (7.24)
Substitution of the expressions for Ry{(u) and S:(v) into equation 7.23 yields the fol-
lowing result for Q«(1).

A t I zV"_l

D =|—-=+r—= 32—+ | —=+ = V;

Q) [2 Ty rorTd 2 2]‘,'
il (7.25)

Vi

B3 £ P

+il= ==+t -+ 212 ———] i

[2 3 1 5 5 Vi1

Vi+

Multiplying the matrices and collecting terms in equation 7.25 yields a solution of the
form of equation 7.17, with the following expressions for the F terms.

Fi(t) = —% (1=

F1) = %(313 - 52+ 2)

(7.26)
Fs(i) = —21-(— 32 + 41 + 1)

Fi@) = %(r - D

The above F functions are used for all of the interior curve segments. For the end seg-
ments of an open curve, the curve may be continued along the individual parabolas that lead
to the end points. For the first line segment, equations 7.18 and 7.21 are used for the
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parabola R(u), with a new t defined by t = 2u, so that 1 varies from O to 1 and u varies from
0to 1/2 along the first curve segment. The F, function is zero along this first segment, with
the other F functions describing the parabola

Fi) = %(l -2 -0
Ft) = (2 — )t (1.27)
Fit)y = %(l - 1)t

In a similar manner, equations 7.18 and 7.22 are used for calculations along the
parabola representing the last segment of the curve. Along this last segment, ¢ is defined by
t = (2v — 1), so that ¢ varies from O to 1 while v varies from 1/2 to 1. Along this last seg-
ment, F is zero, and the remaining functions are

() = %(t -~ Dt
Fi)y=1—12 (7.28)
Fa(t) = %(t + 1)t

The C-program subroutine listed below calculates an open-ended parabolic blend
curve fixed by n points having coordinate values passed to the subroutine by the arrays x{]
and y{]. The first for loop draws the curve for the first segment, the next double for loop
draws the interior segments, and the last loop draws the last segment. In the for loops over
the integer j, the parameter ¢ is incremented by the operation 1+ = dt which equals the op-
eration 7 = t + dt. The increment dt is determined by the parameter nsegs. which is the num-
ber of segments that make up the interval fromz =0t t = 1.

void parBlend(int n,double x[1,double y[})
{

int i,Jj,nsegs,xp,yp;

double t,dt,£1,£f2,£3,f4;

nsegs = 20; dt = 1./(double) nsegs;
MoveTo((int) x[0], (int) ¥[0]);

for (j=1,t=d4t;j<=nsegs;j++,t+=dt)
{
£1 = .5*(1.-t)*(2.-t):
£2 = (2.-t)*t;
£3 = .5%(t-1.)*t;
#¥p = (int) (£1*x{01+£2*x[L1+E3*x[21);
yp = (int) (£1*y[0]+£2*y[1]1+£3*y[2]);
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LineTo (Xp,yp);
for (i=1;i<n-2;i++)

for (j=1,t=d4t;j<=nsegs;j++,t+=at)

{
£1 = «.5*%(1.-t)*(1.-t)*t;
£2 = [ B¥(3.*trLrE-5.%t*E+2.);
£3 = 5% (~3.*t*t+4.*t+1)*t;
fd4 = ,5*(t-1.)*t*t;
#p = (int) (fl*x[i-l]+f2*x[i]+f3*x[i+1]+f4*x[i+2]);
yp = {(int) (fl*y[i-l]+f2*y[i]+f3*y[i+1]+f4*y[i+2]);
LineTo (xp,yp);
}

for (j=1,t=dt;j<=nsegs;j++,t+=dt)

£2 = .5%(t-1.)*t;

£3 = 1.-t*t;

£4 = .5%(t+1.)*¢;

xp = (int) (£2*x[n-3]+£3*x[n-2]+f4*x[n-1]);
yp = (int) (£2*y[n-3}1+£3*y[n-2]+£4*y[n-1]);
LineTo (xp,yp) ;

A closed parabolic blend curve may be constructed by adding three points with in-
dices n,n+1,and n+2, having the same coordinates as points 0, 1, and 2, respectively. The
program for the closed curve contains only the interior double for loop with the index i ex-
tending from ! to n. The closed curve is drawn starting at the second point, as required by
the blended-curve algorithm, and continues to point n+1, which has the same coordinates
as the second point. The additional point 2+2 is needed because, as shown by equation 7.17
and the program listing above, the algorithm for interior curve segments requires four points
that define segments before and after the line segment being drawn.

7.5 NATURAL CUBIC SPLINE

Parametric representation of the natural cubic spline follows equations 7.15. Again ¢ varies
from 0 to 1 along each curve segment. For the natural cubic spline a cubic polynomial inter-
polates the curve between the data points, which serve as the segment joints or knots. The
cubic polynomial provides a sufficient number of coefficients to match the segment values,
slopes (first derivatives), and curvatures (second derivatives) at the knots.

As illustrated in figure 7.10, the ith segment extends between vertices (data points)
V;and V.. Along this segment the curve is given by the formula

Y,(l‘) =a; + bit + o2 + di? (729)
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1)

Figure 7.10 Notation for scgments in a two-dimensional natural cubic spline curve.

where Y(f) represents the y(¢) along the segment; a similar formula holds for Xi(¢) (and for
Z{1) in the 3-D case). Because ¢ varies from 0 to 1 along each segment, Yi(f) reaches the ith
vertex coordinate y; when ¢ = 0, and the vertex value y;+; when £ = 1. Similarly, Xi(f) = x;
when ¢ = 0 and X(f) = x;+1 when ¢ = 1; the coordinate values at the ends of the first seg-
ment are identified in figure 7.10.

The four unknown constants (ai, b;, ¢;, and d;) along each line segment will be deter-
mined by matching to the vertex values, requiring continuity of the first and second deriv-
atives at the interior knots, and applying appropriate conditions at the curve ends. Along
segment i, matching the vertex values y; and y;+ at the left and right ends of the segment
gives the following equations.

Yi0)=yi=a; (7.30)
Y,~(1)=y,-+1 =g +btctd (7.31)

The number of vertex points is 1, with the segments numbered from 0 to m = n —1. Match-
ing vertex values provides 2 equations at each of the m — 1 interior knots plus 1 equation at
each end of the total spline curve; therefore, matching values provides 2m equations in-
volving the 4m unknown constants. Matching first and second derivatives at the m —1 in-
terior knots provides 2m —2 additional equations. The final two equations needed to solve
for the 4m unknown constants are provided by requiring that the second derivatives vanish
at the curve ends (this is the “natural” condition for a physical spline that is free at its ends).

Matching first derivatives at the interior knots provides m — 1 equations for the un-
known constants. In solving for the unknown constants it proves useful to introduce new
constants D; representing the first derivatives at the vertex points. The first derivatives at
the ends of segment i provide the equations

Y,"(O) = D,‘ = b,‘ (732)
Y,’(l) = Dj+1 = b,‘ + 2¢; + 3d, (733)
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Equations 7.32 and 7.33 represent 2m equations; however, m-+ 1 new constants Dihave been
introduced, for a net gain equivalent to m—1 equations for the original constants.

Equation 7.30 solves for a;, and equation 7.32 gives b; in terms of D Muluplymg
equation 7.31 by 3 and subtracting equation 7.33 leads to an expression for c;, and 2 times
equation 7.31 minus equation 7.33 provides an expression for d;.

a; = Yi (734)
bi =D (735)
¢i = 3(yiv1 — yi) — 2Di — Diy) (7.36)
di = 2yi — yix1) + Di + Dj4 (1.37)

Matching the second derivatives at the m—1 interior knots, ¥i—1”(1) = ¥/"(0), gives
the following relation between the constants.

2¢i—1 + 6di—1 = 2¢; (7.38)

After substitution from equations 7.36 and 7.37, the above equation reduces to the follow-
ing expression for i values from 1 through m—1.

D + 4D; + Div1 = 3(yi+1 — yi-1) (1.39)

At the beginning of the curve the natural or free condition gives Yo'(0) = 2co = 0,
which yields the following after equation 7.36 is used to substitute for co.

2Dy + D; = 3(yi — yo) (7.40)

Similarly, the free boundary condition at the end of the curve gives Yn-"(1) =
2¢m-1 + 6dm-1 = 0, which leads to the equation

Dy—y + 2Dy = 3(ym - _Ym—l) (741)

The m+ 1 equations 7.39-7.41 for the m+1 first derivatives D; may be put into ma-
trix form (matrix operations are discussed in appendix C).

— — — - —

2 1 Do 301 ~ yo)
b4 1 Dy 3(y2 — yo)
1 4 1 D, 3(y3 — yo)
. = . (7.42)
1 4 1 D> 301 ~ yms)
1 4 1| |Du 3m — ynoa)
L l 2_ L D’" . _ 3(}’m - ym—l) B

The first matrix on the left is tridiagonal; that is, all elements are zero except for three ele-
ments in each row centered about the diagonal.

The above matrix equation is simplified by first multiplying the top row by the fac-
tor yo = 1/2. Then the element to the left of the diagonal (the vatue 1) in each of the re-
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maining rows is eliminated by subtracting the row dircctly above it multiplied by an ap-
propriate factor y;. These operations produce the matrix equation

1 Yo Do do
1 Y1 D A
1 D )
. = . (7.43)
1 Vm-2 Dm~2 §m~2
| Vm—1 Dy On—1
L 1 B L Dm A L (jlﬂ a
The parameters in equation 7.43 are given by the following relations.
yo = 1/2
Vi = 1/(4 — )/,'—1) fori=1tom—1 (7.44)
= 1/(2 - ym—])
do = 3(»1 — Yoo
& = [Bi+1 = yi-1) = di-1ly; fori = ltom—1 (7.45)

= [3(_ym - ym—l) - (5m—1])’m

Equation 7.43 may be readily solved by starting with the last row and stepping back-
wards to the first row.

Dm - 5’"
D; = i — ‘}/,‘D,'+| fori=m—1tol (746)

The above equations were used to write the subroutine natCubicSpline(), which is
presented as listing 7.2 in appendix B. This subroutine plots a natural cubic spline interpo-
lated between n data points having coordinates given by the arrays x[] and y[].

7.6 UNIFORM B-SPLINES

The simplest B-spline is the linear B-spline, which consists of straight lines drawn between
the data points; that is, the linear B-spline is our standard polyline. The quadratic and cubic
B-splines considered in this section are approximation curves rather than interpolation
curves because these B-splines do not pass through the data points except at locations where
there are multiple data points. The name B-spline arises from the basis (blending) functions
used to describe the curves. At each point on a curve, the quadratic B-spline requires three
basis functions, and the cubic B-spline requires four. These basis functions multiply the ver-

tex point vectors in a manner similar to the Fi(#) functions given in equation 7.17 for the
parabolic blend.
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Quadratic B-Spline

Figure 7.11a shows an open quadratic B-spline consisting of 7 vertex (control) points V,
and n — 2 curve segments Q,(¢). The tick marks delineate the interior knots joining curve
segments, as well as the endpoints of the complete curve.

For the uniform B-splines considered in this section, the basis functions will have the
same form along each curve segment. The open quadratic B-spline can be extended to the
first and last control vertices by prescribing double points at these vertices. If these end-
curve segments use the same basis functions as the interior segments, then the top end
curves shown in figure 7.11b result. The bottom end curves result when the double end-
points are treated as a nonuniform B-spline; see section 7.7. As will be shown later in this

Nonuniform B-spline or
extrapolated endpoint

Double endpoint

~ Nonuniform B-spline or
extrapolated endpoint

Figure 7.11  An open quadratic B-splinc with the defining polyline (dashed): (a) curve for
no special end conditions; (b) curve extended to the starting and ending control vertex
points by means of two different procedures.
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end curves can also be obtained by extrapolating the first and last con-
at relocate the curve ends to the original vertex positions.

he coordinates along a quadratic B-spline may be expressed in
and V,‘.

section, the bottom
trol vertices to positions th
The vector Qi(r) fort i
terms of the three nearest vertex points Vi—2, Vi-1,
Qi) = ViiaBi o) + VieiBia(8) + ViBizo)
. (1.47)
=2 VB
k=-2

The three basis functions contributing to the curve segment between knots i and i+1 are il-
lustrated in tigure 7. 12a. The bell-shaped curves peak at the vertex points, and spre?d across
exactly three segments. As in the previous curve formulations, the parameter ¢ increases

from O to 1 along the curve segment. o
The basis functions are quadratic in the parameter ¢ within each curve segment.

i-3 i-2 i—1 i i+1 i+2 i+3 i+4

(d)

Figure 712 Basis functions for quadratic (a, b) and cubic (c, d) B-splines.
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B At)=a;+ bt + ¢i2 fori—2<j<i (7.48)

As illustrated in figures 7.12a and b, the basis function B;-»(f) extends across three seg-
ments, from knot i—2 to knot i+ 1, with ¢ increasing from 0 to 1 along the curve from one
knot to the next. Because the basis function coefficients are different in each curve segment,
there are a total of 9 coefficients in equations 7.48. For the Bi—(f) curve shown in figure
7.12b, the quadratic polynomials 7.48 define a b{(z) function in each of the three segments.

boo(t) = ai—2 + biat + ci-af?
b_i() = ai-r + it + ci- i (7.49)
b_o(t) = ai-o + bi-gt + ci-o?

Because the shapes of the basis functions are the same, they mnay each be describ(?d
as a composite of the three functions given in equations 7.49. Figure 7.12b shows that in
the ith segment (between knots i and i+ 1), the basis function Bi-2(?) contributes b -2(2), the
function B; -(¢) contributes b_(7), and Bi(t) contributes h-o(z). Accordingly, equation 7.47
may be written as

Q) = V; 2b2(t) + Vicib—1(2) + Vib_o(1)
0 (7.50)
= 2 Vi)

k=2

The single basis function B;—2(f) will now be considered. Because the curve is a su-
perposition of the basis functions having the same shape, continuity of B;-»(¢) will ensure
continuity of the curve. The continuity requirement that B;-o(f) and its first derivative be
zero at its boundary knots i—2 and i+ 1 gives the relations

ai-2=0
ai+bitec=0
biy=0
bit2c=0

(7.51)

The first and third equations of 7.51 correspond to knot i—2, where the parameter ¢
has the value 0 because the knot is approached from the right. The second and fourth equa-
tions are for knot i+ 1, where ¢ has the value 1.

At the interior knots, i~ I and i, the basis function and its first derivative must be con-
tinuous (the quadratic B-spline has continuity C'). This continuity provides a total of four
relations. Because the derivative of B;—5(?) is b; + 2¢;t, the following equations result.

ai-2+ by + ¢ = ai
ai-1 + bi-y + i1 = a

(7.52)
bi—2 + 2¢i-2 = bi—y

bi-y +2c-1=b;
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The final equation needed to solve for the nine coefficients is provided by a normal-
ization, which requires that the three basis functions contributing at any r = 0 sum to the value
1. Because each basis function has the same bell-shaped curve, normalization is provided by

bo(0) + b_1(0) + b-x0) = |
which gives (7.53)
ai-2 tai-y +ai=1

The nine equations 7.51, 7.52, and 7.53 are solved for the nine coefficients, which
upon substitution into equations 7.49, yield

b_o(t) = %ﬂ

b-y(n) = %(1 + 2t =217 (7.54)

boxt) = %(1 o

Equations 7.54 substituted into equation 7.50 represents a solution for the quadratic
B-spline curve. Values for the nine coefficients may be obtained by comparing equations
7.49 with equations 7.54. These coefficients can readily be shown to satisfy equations 7.51,
7.52, and 7.53. Also, the resulting expressions 7.54 satisfy the following normalizing con-
dition at all ¢ values.

bo(t) + b(t) + b-o(t) = | (1.55)

Because three basis functions are needed to describe the curve, the curve starts with
the second segment. For an open curve, as shown in figure 7.11a, the curve starts midway
between the first two vertex points (since b-o(0) = 0 and b . 1(0) = b-2(0) = 1/2), and ends
midway between the last two vertices. The open quadratic B-spline is drawn by subroutine
quadBSpline() listed below.

In the subroutine quadBSpline(), the outer for loop over index i extends over the
nisegs = n — 2 curve segments. In the inner for loop over the integer j, the parameter ¢ is
incremented by the operation r+ = dr, which equals the operation t = ¢ + dr. The incre-
ment dt is set by the parameter atsegs, which is the number of segments that make the in-
terval from ¢ =0tot = 1.

void gquadBSpline(int n,docuble x[],dcuble yl])
{

int i,d,nisegs,ntsegs;

double t,dt,b0,bl,b2,xp,yD;

nigsegs = n - 2;
ntsegs = 20; dt = 1./(double) ntsegs;

for (im2; i<= nisegs+l; i++)
{
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for (§=0,t=0.;j<=ntsegs;j++,t+=dt)
{
b0 = .5*t*t;
bl = .5*%(1.+2.%t=-2.%t*t);
b2 = .5*%(1.-t)*{(1l.-t);
xp = b2*x[i-2)+bl*x[i-1J+b0*x[i];
YD = b2%y[i-2]+bl*y[i-1]1+b0*y([i];
if (i==2 && j==0)
MoveTo( (int) xPp,{int) yp);
else
LineTo( (int) xp, (int) ¥D)?
}

The quadratic B-spline can be extended to the starting and ending control vertices by
making these points double, that is, by placing one additional vertex at the location of the
first vertex Vo and placing an additional vertex at the last location V. Note thatat t = 0
in the first segment, b_o(t) = Qand b-2(0)+b-(0) = 1, therefore Qi(#) in equation 7.50 will
equal V;-1 ifitis adouble point (since V;.>equals V;- at the double point). A similar analy-
sis shows that the curve will extend to a double point at the end of the curve.

If the functions 7.54 are used for b-o(f). b-1(r), and b »(f) in the first and last curve
segments (with the first and last vertices being double points), then the curves in these seg-
ments differ somewhat from those drawn by AutoCAD. The AutoCAD curves correspond
to treating the double points as a nonuniform B-spline, as discussed in section 7.7. The first
and last curve segments can be drawn by using the appropriate nonuniform B-spline ex-
pressions for b_o(£), & 1(r), and b .»(1). But the same curve segments can be programmed
more simply by an equivalent procedure, namely, by extrapolating the first and last vertices
to new positions, without adding any new vertices.

The extrapolation procedure for the first vertex Vo consists of simply requiring that
the new vertex position produce a curve that starts at the original vertex position. That is,
using equation 7.50 at the beginning of the first curve segment (i = 2 and t = 0) produces
the following condition:

1

i 1 1
::-_Xm“ + —x s 0 = — VY 4+ -y 756
Xo = 5% e Yo =35 o (7.56)

Equations 7.56 give the following expressions for the new position of the starting vertex.
x5 = 2xo0 —x1, Y& =2y0 — n (7.57)

A similar extrapolation of the last vertex gives the expression
XEO = %01 TXaed VA= 2amt —Yaea (7.58)

Equations 7.57—7.58 can be used to provide the following program lines at the be-
ginning of the subroutine quadBSpline() to produce beginning and ending curve segments
that match those drawn by AutoCAD.
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®[0] = 2.*x{0]-x[1]; y[0] = 2.*y[0]~y[1];
®[n-1] = 2.%x%[n-1]-%{n-2]; y(n-1] = 2.*y[n-1]-y[n-21;

A closed quadratic B-spline can be constructed from the subroutine quadBSpline() by
adding two vertex points to form a periodic set of vertices. For example, vertices V, = Vo
and V11 = V) can be added, with the number of curve segments increased to nisegs = n.
Also, arrays x{} and y[] should be dimensioned to handle n + 2 values. The additional ver-
tices are added by placing the following lines at the beginning of the subroutine quadB-
Spline().

x[n] = x[0]; yIn]l = y[O0]l;
x[n+1] = x(1}; yIin+l] = y[1];

B-spline curves can he drawn with AutoCAD by entering “S” for spline under the
PEDIT command. The default spline is the cubic B-spline, but the quadratic spline can be
drawn by changing the system variable SPLINETYPE from the value 6 {for the cubic
B-spline) to the value 5. That is, enter SPLINETYPE, and then the number 5 (the command
SETVAR may precede SPLINETYPE, but it is not necessary). Also, the following system
variables can be changed: SPLFRAME can be changed from O to 1 to display the spline
frame (polyline); SPLINESEGS may be increased from its default value of 8 to increase
the number of segments used in drawing the spline curve.

Figure 7.13a shows some sample curves drawn with the quadratic B-spline option on
AutoCAD. On the left of the figure, a vertical straight line appears because three sequen-
tial points were entered with the same x-values. In equation 7.50, the segment determined
by these three points will have this same constant value of x because the b,(¢) functions sum
to the value 1. On the left of figure 7.13a it is also illustrated that when two points merge,
the quadratic B-spline will pass through the double point, and the slope at the double point
will be discontinuous.

The right side of figure 7.13a shows a closed quadratic B-spline drawn from four con-
trol points located at the corners of a square. When the upper-right-hand control point is
changed to a double point, the curve passes through the double point and has a discontinu-
ous slope at that point.

Cubic B-Spline

The cubic B-spline requires four basis functions at each point on the curve.

Qi(t) = VimaBioa(t) + VimaBi—o(t) + Vi Bio (1) + ViBi-o(1)
0 0 (1.59)
= 2 ViuBid) = 2 Viubi(t)
k=—3 k=-3
The open cubic B-spline curve shown in figure 7.14a for n control points has n — 3
line segments Q;(r) (one less segment than the quadratic B-spline shown for the same con-



(a)

(b)

176 Splines and Other Curves for Data Fitting Chap. 7

- .. —— g N
\\\ N N

| | Figure 7-13 Sample B-spline curves
drawn with AutoCAD: (a) the quadratic
} B-spline; (b) the cubic B-spline. The smallest
| dots represent single vertex points; the larger
J. A dots, double points; and the largest dots, triple

v e = . ° points.

trol points in figure 7.11a). The index number i starts with i = 3 for the curve Qi(?) in equa-
tion 7.59 because the first curve segment is controlled by the first four vertices: Vo, Vi, Vs,
and V}.

Figure 7.12¢ illustrates the four basis functions contributing to the curve segment be-
tween knots i and i+ 1. Each basis function extends across four curve segments, and is rep-
resented by a cubic polynomial in the parameter 7. For example, the B;—(f) function shown
in figures 7.12¢ and d is given by the expression

Biaot) = + bt + 2+ dpp fori—2<j<i+1 (7.60)

The four coefficients in each of the four segments spanned by a basis function repre-
sent a total of 16 constants to be determined. Because the equations are now cubic, conti-
nuity of second derivatives can be required. Accordingly, 16 equations for the coefficients
are obtained by requiring the following: values, first derivatives, and second derivatives are
zero at the boundary knots i—2 and i+2 (6 equations); values, first derivatives, and second
derivatives are continuous at the three interior knots i—1, i, and i+ 1 (9 equations); and nor-
malization is prescribed at £ = 0 (1 equation).

The above procedure yields the following expressions.

b-o(t) = %ﬁ
b-i(t) = é(l + 3t + 32— 38)

(7.61)
bos(t) = é(4 — 62+ 3)

b = (1 = 1)

Equations 7.61 satisfy the following normalization at each value of 1.
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Nonuniform B-spline or
extrapolated endpoint

“Nonuniform B-spline or
extrapolated endpoint

(b)

Figure 7.14 An open cubic B-spline with the defining polyline (dashed): (a) curve for no
special end conditions; (b) curve extended to the starting and ending control vertex points
by means of two different procedures.

bo®) + b-1() + b2(t) + b-3() =1 (7.62)

In the open cubic B-spline subroutine given below, the outer for loop starts with in-
dex number { = 3 and extends to nisegs+2 so that a total number nisegs curve seginents
are drawn.

void cubicBSpline(int n,double x[],double y[1)
{

int i,3j,nisegs,ntsegs;

double t,dt,b0,bl,b2,b3,xp,yp;

nigegs n - 3;
ntsegs = 20; dt = 1./(double) ntsegs;
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for (i=3; i<= nisegs+2; i++)
{
for (j=0,t=0.;j<=ntsegs;j++,t+=dt)
{
b0 = £*t*t/6.;
bl = (1.43.*t+3.*%t*E~3 *t*t*t)/6.;
b2 = (4.-6.*C*t+3.*L*t*t)/6.;
b3 = (1.-t)*(l.-t)*(1.-t)/6.;
Xp = b3*x[i-3)+b2*x[i-2]+b1*x[i-1]1+b0*x([i];
¥Yp = b3*y[i-31+4b2*y[i-~2]+bl*y[i-~1]+b0*y[i];
if (i==3 && j==0)
MoveTo((int) xp, (int) yp);
else
LineTo((int) xp, (int) yp);

The above subroutine will produce a cubic B-spline curve like the one shown in figure
7.14a. The curve can be extended to the starting and ending control vertices by making these
points triple, that is, by placing two additional vertices at the location of the first vertex Vo, and
placing two additional vertices at the last location V,. When equations 7.61 are used for the
bi(z) functions with each vertex in the triplets, the curves reach the starting and ending vertices
as illustrated by the top curve in figure 7.14b. The bottom curve in 7.14b, which corresponds
to the AutoCAD cubic spline, can be drawn by treating the triple points as a nonuniform B-
spline (section 7.7), or by extrapolating vertices Vo, Vi, V.-, and V, in the following manner.

The following conditions are obtained from equation 7.59 by requiring that Vo be the
starting point of the curve (i = 3 and 7 = 0 at the starting point).

1 2 1 1 2 1
x:_xnew+_new+_x’ =_new+_new+__ 763
0 g0 3x1 6 2 B4 6)’0 3)’1 6)72 ( )
In equations 7.63 both the first and second vertices are moved to new positions. An
additional condition to be imposed is that the slope of the curve at Vo be tangent to the line
that connects the original vertices Vo and V. This condition is imposed by the equations

1 1 dy |
—_ —__—__I'IEM’+_ = — — = — nen+_ _— —_—
(Z;‘)r:() zxo zxz a(x1 — xo), ( d l‘):=o 2)’0 2)’2 a(yr — yo) (7.64)
When the constant « in equation 7.64 is varied, different curves result, with o = 3
giving curve segments that are identical to those drawn by AutoCAD and those given by
the nonuniform B-spline. For a = 3, equations 7.63 and 7.64 yield

xXg™ =X = 60— x), Y =y2— 6(y1 ~ y0)
and
new _ 1 I (7.65)
X = 5(3)61 —x), ¥ =§(3)’1 - y2)
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Because the x;7* and y;" values do not depend on xy and yo, the xo" and yg*
values can be calculated first, as shown in the following program lines. These lines may
be inserted into the subroutine cubicBSpline() to duplicate the AutoCAD open cubic
B-splines. Note that this extrapolation procedure requires at least five control points

(n25).

x[01 = x[2]+6.*(x[01-x[11); =x[1] = 1.5*x[1]-.5*x([2];
yi01 = ¥I21+6.*(y[0]1-y[1]); y[1] = 1.5*y[1]-.5*yv[2];

xfn-1] = x[n-31+6.*(x[n-1]-x{n-2]);x[n-2] = 1.5*x[n-2]-.5*x[n-3];
yin-11 = y[n-3]+6.*(y[n~11-yIn-2]);y[n-2] = 1.5*yIn-2]-.5*y[n-3];

A closed cubic B-spline can be constructed from the subroutine cubicBSpline() by
adding three vertex points to form a periodic set of vertices. For example, vertices V,, = Vo,
V.e1 = Vi, and Vo = V) can be added, with the number of curve segments increased
to nisegs = A, so that the curve closes on itself. Also, arrays x[] and y[] should be dimen-
sioned to handle n + 3 values.

The behavior of cubic B-spline curves is illustrated in figure 7.13b. The first curve on
the left of figure 7.13b has three colinear vertex points, but no straight segment exists in the
spline curve. Four colinear points in the next spline curve do produce a straight-line seg-
ment. This result may be deduced from equation 7.59 because the curve segment deter-
mined by these four colinear vertex points will have a constant x-value (the four b(f)
functions sum to the value 1). Figure 7.13b also illustrates the merging of vertices to form
double points and triple points. Although the cubic B-spline approaches close to a double
point, it does not pass through it, and the first derivative remains continuous (but the sec-
ond derivative does not). The curve does pass through a triple point, at which it has a dis-
continuous first derivative.

Figure 7.15 shows that cubic B-splines produce curves of considerable smoothness
and flexibility. These curves are noticeably smoother than curves drawn with the circular-
arc (biarc) fit. The circular-arc fit tends to produce some small-scale extraneous wiggles as
arcs are fit between data points. Note that the circular-arc curves in figure 7.5 do not appear
to be as smooth as the cubic B-spline curves in figure 7.15.

Smooth curves can be drawn with considerable efficiency with the cubic B-spline. As
an example, consider the character fonts displayed in figure 7.16. The top part of the figure
shows the spline frame; that is, a polyline through the vertex points. Each character is con-
structed with two or three B-splines, plus some short straight lines that form the serifs at the
ends of the splines. Vertical straight segments on the splines forming the letters I/ and D are
constructed with four colinear vertices.

Fonts can also be constructed from quadratic curves. For example, the TrueType font
format developed for the Macintosh is based on quadratic B-spline curves. More vertex
points are required for quadratic curves, but a quadratic curve can be computed and printed
fastffr. The PostScript printing language for laser printers uses cubic curves; namely, com-
posite cubic Bézier curves. In section 7.8, Bézier curves of general order are discussed
along with composite cubic Bézier curves.
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Figure 7.15  Vertical cross sections and some detail lines for a Porsche 928. These curves

were drawn on AutoCAD with cubic B-splines

Figure 7.16 Characters formed by cubic B-splines, with the spline frame shown at the
top. The dots identify the locations of the vertex points.

".7 NONUNIFORM B-SPLINES

Chap. 7

Nonuniform rational B-splines (NURBS) are generalizations of the uniform B-splines con-
sidered in the preceding section. NURBS curves and surfaces form the basis of a number
of CAD systems because they can represent free-form shapes as well as common analytic
shapes such as conic sections (circles, ellipses, parabolas, and hyperbolas) and primitive
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surfaces like spheres, tori, cylinders, and cones. Although the basic AutoCAD release 12
software does not contain NURBS, AutoSurf™ release 2, which is an add-on package that
works from within AutoCAD, is NURBS based.

The closed curves drawn in figure 7.17a show that the cubic uniform B-spline in a
square polyline frame provides a rough approximation to a circle, while the quadratic uni-
form B-spline gives a poor approximation to a circle (the cubic B-spline is the inner solid
curve, and the circles are shown with dashed lines). There is no way to accurately represent
a circle with a uniform B-spline having a finite number of control vertices. On the other
hand, NURBS curves have the flexibility to represent a continuous range of curves, as il-
lustrated in figure 7.17b. For these NURBS curves, weights are assigned to each of the con-
trol vertices, which lie at the corners and side midpoints of the outer square. In figure 7.17b,
the weights of the comer vertices are varied from 0 to e to produce curves ranging from
the inner rotated square to the outer square frame. When the weights of the corner vertices
are V2/2 times the weights of the vertices on the square sides, the NURBS curve is a circle,
as shown by the middle curve in figure 7.17b.

Before the theory of NURBS curves is developed in this section, nonuniform non-
rational B-splines must be studied.

Nonuniform Nonrational B-Splines

The uniform B-splines described in the preceding section can be generalized by consider-
ing knots nonuniformly spaced along the parameter 7. Previously, the knots were consid-
ered to have equal spacing, with the 7 interval between knots being constant. The
independent parameter ¢ for the uniform B-splines described in section 7.6 varies between
0 and 1 and is related to the increasing parameter t by the relation 7 = i + ¢, where i is the
curve segment index number.

For convenience in the following discussion of nonuniform B-splines, the overbar is
dropped from 7. The knots are placed along t as prescribed by the following knot vector T
having m elements o through z,,-1.

Tknor = [Imin’ Lminy ooy bmins Ty ooy ln—k=1, Imax, tmax, -.., tma.r]

k k

(7.66)

The knot vector T in equation 7.66 is appropriate for an open nonuniform B-spline
of order k and degree k— 1. Thus, an open quadratic nonuniform B-spline has a knot vector
with k = 3 identical elements at the start of the curve (fy = t; = f2 = tmy, Where tn is of-

Figure 7.17 B-spline curves: (a) quadratic
and cubic uniform B-splines, with control
vertices at the corners of the square, and two
circles (dashed lines); (b) quadratic non-
(b) uniform rational B-splines (NURBS), with
the control vertices at the side midpoints hav-
ing weights of 1.0, and the comer vertices
having weights of 0.0, 0.1,0.3,v¥2/2, 1.5, 5.0,

and oo,
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ten set equal to 0) and &k = 3 identical values at the curve end (ty—3 = e -2 = I :<”"""')'
The elements of the knot vector must be nondecreasing, fu < f, £; < ;+1» 20d ""_“A"'l S Ima.

For the open nonuniform B-spline, the following relation holds between the number
of knots m, the number of control points n, and the spline order £.

me=n (7.67)

Thus a quadratic spline (k = 3) will have three more knots than control points, and a cubic
spline will have four more knots than control points.

AutoSurf can draw nonuniform B-splines with orders from 2 through 26. Becausc. the
order of the B-spline is limited by the number of control points, nine nonuniform B-splines
(orders 2 through 10) can be drawn for the 10 control points shown in figure 7.18. Auto-
Surf draws free-form splines as nonrational B-splines but constructs primitive curves like
the circle shown in figure 7.17 with NURBS.

Splines are drawn in AutoSurf with the SPLINE3D command and are edited with
the EDITSP command. These commands offer some advanced features not present in the
PLINE and PEDIT commands of AutoCAD. For example, with SPLINE3D, points on the
curve may be entered, and AutoSurf will determine appropriate control point positions.

Closed splines are drawn in AutoSurf by selecting “closed” in the advanced options
dialog box, and entering points on the curve. AutoSurf then computes appropriate control
point positions, including starting and ending control points that lie midway between two
other control points. Thus, AutoSurf uses an “open” spline to represent the closed curve, in
the same manner that the circle is represented in the next subsection. The EDITSP com-
mand can be used to move the first or last control point to “open up” closed curves includ-
ing circles (circles and ellipses are drawn with the ELLIPSE3D command).

The EDITSP command in AutoSurf moves and adds control points like the AutoCAD
PEDIT command, but with EDITSP, points can be moved dynamically by using the mouse
to move the cursor, and points on the curve (as well as control points) can be selected for
displacement.

Figure 7.18  B-spline curves of orders 2 through 10 drawn with the AutoSurf SPLINE3D
command. The control points are the same as those used in figures 7.11 and 7.14.
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For the open nonuniform B-spline, the basis function of order k is represented with
the notation N, (), with the curve coordinates being represented by the vector Q).

n—1

Q) = 2 ViNil0) (7.68)
i=0

Although the form of equation 7.68 appears to be different from that of equations 7.47 and
7.59 for the uniform quadratic and cubic B-splines, the forms are comparable because
for the quadratic case only three Ni3(f) functions will be nonzero along any curve segment,
and only four Ni4(?) functions will be nonzero along a cubic B-spline curve segment.
Thus the Nix(#) functions for the nonuniform case correspond to the B(7) functions of the
uniform case.

The basis functions N;«(t) of any order can be calculated from the Cox-deBoor re-
cursion relation.

t— t)INu-1(0) 4 (tivr — ONjpe=1()
tivk-1— 4 tivk — L+

Niwlt) = (

(7.69)

To start the recursion relation 7.69, the following values are prescribed for the first-order
basis functions.

i<t < by

. (7.70)
otherwise

1

N, 1,1\([) { 0

As illustrated in figure 7.19a, each first-order basis function spans the distance between ad-
jacent knots.

Although equations 7.69-7.70 can be directly programmed to provide a spline of any
order, it is instructive to develop solutions algebraically for orders 2 and 3. First, when us-
ing equation 7.69 to calculate N;a(f), note that N;(z) is nonzero only in the region ;< ¢ <
ti+1, and N1 1(7) is nonzero only in the region #i- <7 < f;+2. Thus, equation 7.69 yields the
following result.

Ni2(?) L Ul R N (1.71a)
tiv)] — L

Na@) = 270 for i S 1 <t (1.71b)
fiva — Liv1

The fact that the second-order basis function N; »(f) spans across two curve segments (from
knot #; to t;+2) is illustrated in figure 7.19a.

An expression for Ni+12(f) may be obtained by transforming i — i + 1 in equations
7.71. The basis function N;3() is then calculated from equation 7.69 by requiring that only
Ni2(?) is nonzero in the region #; < t < ti+1, both Ni2(f) and Ni+ 2(f) are nonzero in the re-
gion 41 <1 < fi+2, and only Ni+12(f) is nonzero in the region fi+2 £t < t;+3. The following
result is obtained.
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Figure 7.19 Basis function ranges for nonuniform B-splines: (a) the buildup of a third-
order basis function from lower-order basis functions; (b) the three third-order basis func-
tions that contribute to the B-spline in the region <1 < £y,

(r— 1)
Nis(t) = fors;<t <t _
O == i (7.72a)
(= t)tiv2 — 1) (tie3 — D — ie1)
Nistt) = + for ti) 1< ti42 (7.72,
0 (Biv2 = t)(tir2 ~ ti1)  (lix3 — L) liva — tin1) ! +2(7.72b)
tivs — 1)?
Nis(r) = (tivs — 0 {OF tis0 S 1 < 143 (7.72¢)

(i3 = Lie))tiv3 — tiv2)

The above procedure for calculating N;3(7) is summarized in figure 7.19a. The first-
order basis functions N 1(#) and Ni+11(7) are used to form Ni(f) by equation 7.69; M, 1.1(D)
and Ni+2,1(t) are used to form Ny 1 2(f); then Nia(f) and N;+1 2(2) are used to form N:s(o).

Because the second-order basis functions each Span two curve segments, a general
point 7 will be covered by two second-order basis functions; see figure 7.20a. As shown by
figure 7.20a and equations 7.71, second-order basis functions are linear in z. This results in
a second-order spline consisting of straight-line segments connecting the control points.
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Figure 7.20 Basis functions for a nonuniform B-spline: (a) second-order basis functions
for the knot vector Tier = [0,0,0.5, 1,2, 3,3 1; (b) third-order basis functions for the same

knot vector.

The third-order basis functions given by equations 7.72 cover three line segments,
with the result that three third-order basis functions contribute at any ¢ value. Third-order
basis functions are shown in figure 7.20b for a particular nonuniform knot vector.

Figure 7.19b shows the three third-order basis functions that contribute for a value of
¢ between knots 7 and #i+1. The first is Ni3(£), which contributes a term (here called b-o(f)
in analogy to the uniform B-spline case) determined by equation 7.72a; the second function
is Ni—15(1), which contributes a term b-,(f) calculated from 7.72b with i replaced by
i — 1: and the third is Ni—2,3(f), which contributes a term b-o(t) calculated from 7.72c with
i replaced by i — 2. Thus, the curve coordinates along segment ; may be calculated with a
formula of the same form as for the uniform case in equation 7.50. Accordingly, the sub-
routine nonuQuadBSpln() given below is the same as the uniform quadratic B-spline sub-
routine quadBSpline(), except that a knot vector passed to the subroutine is used to calculate
the b«(¢) functions for the nonuniform B-spline.

void nonuQuadBSpln(int n,double x[],double ¥ []1,double tknot[l)
{

int i,j,nisegs,ntsegs;

double t,dt,b0,bl,b2,xp,v¥P;

double tnl,t0,tl,t2;

nisegs = n - 2; ntsegs = 20;
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for (i=2; i<=nisegs+1; 14+)

{
tol = tknot{i-13]; e « tknot [i];
t1 = thnot[1+1); t2 = txnmot(i+2);
if (£l > to)
{
4t = (£1-t0)/(dcuble) ntsegs;
for (3=0, €mt0; j<entsegs; j++, t+=dt)
{
BO = (£-t0)*(e-£0)/((£2-t0)*(t1-t0));
bl = (til-t)*(t-tnl)/({t1-t0)*(tl-tnl)) +
(£2-£) *(£-£0)/{(t2-€0) *(t1-t0));
b2 = (tl-t)*(tl-t)/({ti-tnl)*(tl-t0));
¥XP = b2*x[i-2]+bl*x{i-1]1+b0*x[1];
YP = b2%y[i-2]+bley(i-1]1+b0*y[i];
if (3 == 0)
MoveTo( (int) xp, {(int) yp);
else
LineTo({(int) xp, (int) yp);
}
}
}

In the subroutine nonuQuadBSpin(), knots are related to the index i by the following
notation: /21 stands for “i negative 17, or knot number i~ 1; 10 for knot i +0; 1l for i+ 1: and
12 for i+2. Note that the first knot, rkrnorf[0], does not appear in the subroutine. Although
tknot[0] = ro appears in equations 7.72u and b that represent Ng 3(£), only equation 7.72¢ is
used to represent Nga(?) in the first curve segment, In a similar manner, the last knot is not
used directly in the curve calculation.

As illustrated in figure 7.20b, the identical values (0) for the second and third knots
produce the following basis functions at t = 0: Np3(0) = 1, Ny 3(0) = 0, and N21(0) = 0.
These values produce a curve that starts at the first control point. Similarly, the multiple
knot values at the end of the knot vector force the curve to extend to the last control point.

When the knots are uniformly placed, the third-order basis functions N, 3(2) over in-
terior line segments reduce to the uniform B-spline basis functions B(t). That is, the three
functions in equations 7.72a—c reduce to the three quadratic polynomials b{1) given in equa-
tion 7.54 when the parameter ! is replaced by i + 1, where the new ¢ varies from O to 1.

When ¢ is replaced by i + 1, the first curve segment is covered by parts of three basis
functions: No3(2) = b-o(#) calculated by equation 7.72a with i = 2, Ni3(t) = b-(#) calcu-
lated by equation 7.72b with i = 1, and~N2._z(t) = b_x1) calculated by equation 7.72¢ with
i = 0. (Or equivalently, the value i = 2 for }he tlrsl.curve segment can be substituted in the
formulas in the nonuQuadBSpin() subroutine.) This procedure was used to derive the fol-

lowing relations.
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b_o(t) = %ﬂ

bt = %r 4 - 31) (7.73)

boy=( -1

In a similar manner, when ¢ is replaced by i + 1, the last curve segment yields the
functions

b-olt) = £2

- “3p
b =5(1 +21=30) 774

boo(t) = %(1 — 1)

The AutoCAD quadratic B-spline curves are reproduced when equations 7.73 are
used for the first curve segment, equations 7.54 for the interior segments, and equations
7.74 for the last segment. As discussed in section 7.6 on uniform B-splines, equations 7.54
can be used with an extrapolation procedure on the first and last control points to produce
the same first and last curve segments as equations 7.73 and 7.74.

The cubic (fourth order) nonuniform B-spline can be calculated by the same proce-
dures as described above for the quadratic case. For the cubic case, four basis functions de-
termine a portion of the curve. These fourth-order basis functions can be calculated from
the third-order functions 7.72 by using the Cox—deBoor formula 7.69. (The implementa-
tion of the fourth-order nonuniform B-spline is left for exercises 7.17-7.19). When the knots
are uniformly spaced, the uniform cubic B-spline discussed in section 7.6 is recovered.

Nonuniform Rational B-Splines (NURBS)

The term rational in NURBS signifies that a ratio of basis functions is formed. Specifically,
the ratio is formed by dividing by the sum of the basis functions. Also, a weight w; is as-
signed to each vertex. Thus, equation 7.68 is replaced by the following.

n—1

_E ViwiNil(®)  n-
Q) = L5——= 2 VR (.75
2 wiNiult) =0
i=0
In equation 7.75, the rational B-spline basis functions R;«(?) are defined by
Rty = ) (1.76)

> wiNidd)
i=0
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The weights w; are often represented by the variable /; because they can be interpreted
geometrically in terms of homogeneous coordinates; see, for example, Rogers and Adams
(1990), or Piegl (1991).

A subroutine for nonrational B-splines can be developed by passing to the subroutine
an array w{] for the vertex weights and by using these weights in the calculation of the curve
coordinates xp and yp. In particular, the subroutine nonuQuadBSpln() above can be modi-
fied for rational B-splines by replacing the two lines for xp and yp by the following three
program lines, where the variable bsum is assigned a double data type.

bsum = b2*w[i-2]1+bl*w[i-1]+b0*w[i];
Xp (b2*w[i-2]*x[1~2]+bl*w[i-1]1*x[i-1]+b0*w[i]*x[i]) /bsunm;
yp = (b2*w[i-2]1*y[i~2]1+bl*w[i-1]*y[i-1]+b0*w[i]*y[i])/bsum;

For the closed curves shown in figure 7.17b, there are nine control points starting and
ending at the midpoint of one of the sides of the outer square. The array for the weights
has unit values at the side midpoints; that is, w[0] = w[2] = w[4] = w[6] = w[8] = 1.0,
and the corner vertices are assigned equal weights: w[l] = w[3] = w[5] = w[7] = w,,
where the seven closed curves from the inner rotated square to the outer square are formed
with w, values of 0.0, 0.1, 0.3, \12/2, 1.5, 5.0, and . A circle is formed for the value
we = N2/2.

The curves of figure 7.17b are separated and replotted in figure 7.21, along with plots
of the basis functions. The curve is an open curve that starts at one of the side control points
(whose locations are shown on the square at the lower right of figure 7.21). Because of the
double knot values, the curve always passes through the control points located at the side
midpoints. When the corner control vertices have zero weight (w. = 0), the curve reduces
to straight line segments between the side control points. At the other limit, when w, — o,
the curve extends all the way to the polyline frame defined by the control vertices.

In terms of the basis functions shown on the left of figure 7.21, the double knot val-
ues force one of the basis functions to peak at the value 1 (and the others to drop to 0) at
each knot location (r = 0, 1, 2, 3, and 4). These peaks force the curve to start at one of the
side control points, then pass through the other three side control points, and end on the first
side control point. The curves shown in figure 7.21 start on the control point at the middle
of the bottom side of the square because the control points were given by the following vec-
tors: x{]1=11,2,2,2,1,0,0,0, 11and {1 = [0,0,1,2,2,2, 1,0, 0].

Circles drawn on AutoSurf with the ELLIPSE3D command are formed as open
B-splines, like the curves described above. When the EDITSP command is used to display
control points, the square frame is shown, and the selection of control points starts and ends
with a point at the middle of one side of the frame, indicating an open curve. Furthermore,
if the starting or ending control point is moved (with the Pull option), displacement of the
first or last control point opens up the curve and spline frame.

Alternatively, a circle could be represented by four 90° circular arcs, each drawn with
three control points. For example, the lower-right quarter circle can be drawn with the fol-
lowing knot vector, weight vector, and control point coordinate vectors: Tier =10, 0,0, 1,
L1, w=[1,v2/2,1],x[] = [1, 2, 2], and y[] = [0, 0, 11.
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Figure 7.21 NURBS basis functions on the left, with the resulting closed curves on the
right, calculated with the knot vector Tinor = [ 0,0,0,1,1,2,2,3,3,4,4,4]. The control
vertices lie on the side midpoints and on the corners of the square shown on the lower right.
The side vertices have a unit weight factor, and the corner vertices a weight of we, accord-
ing to the weight vector w = [ 1, w,, 1, we, 1, we, 1, we, 1 ).
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A circular arc of any angle can be represented by a quadratic NURBS curve; see, for
example, Rogers and Adams (1990). Three arcs of 120° each can form a circle, and com-
bining these arcs into a single curve leads to the circle representation given in exercise 7.22.

8 BEZIER CURVES

Two types of Bézier curves are considered below: first, the general Bézier curve of order m
= n — 1, where n is the number of data points. This curve will start at the first vertex (data)
point and extend to the last point, with the intermediate vertex points acting as control
points. Each point on the curve is controlled by all of the vertex points, with the result that
vertex points have very little local control of the curve when the Bézier curve is of high or-
der. Although AutoCAD does not incorporate single Bézier curves, it does use Bézier sur-
faces defined by a mesh of Bézier curves of order determined by the number of data points.
A discussion of Bézier surfaces is included in chapter 12.

The second type to be considered is a composite cubic Bézier curve, which is made
up of cubic Bézier curves connected at inserted points. Such composite cubic Bézier curves |
are used to designate font shapes in PostScript software, which is widely used to produce
high-quality characters on laser printers and typesetters.

General-Order Bézier Curve

The nonuniform B-spline curve reduces to the special case of a Bézier curve when the or-
der k = n, where # is the number of vertices in the control polyline. The total number of
knots given by equation 7.67 is m = 2k = 2n. Using the values f,;, = 0 and fpa = 1, the
knot vector for a Bézier curve is given by the equation

Tknor = [ 0, 0, ievy O, 1, 1, SN 1, ]
R R e

(7.77)
k k
The vector Q(r) for points along the curve is thus given by }
d
Q) =2 ViPu(1) (7.78)
i=0

where d is the degree of the curve, which is related to the curve order k by the relation d =
k — 1 = n —1. The entire curve is drawn as r varies from 0 to 1.

Equation 7.78 is the same as equation 7.68, except that P; 4f) has been used to denote
the Bézier basis functions, which equal the nonuniform B-spline basis functions for the case

k = n. The Bézier basis functions are given by the following Bernstein polynomials of
order d.

Pifn) = (‘:)t"(l — )d-i (;J) Eﬁ (7.79)

The second of equations 7.79 defines the binomial coefficient.
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The function Py 4(f) is given by equation 7.79 when 0 < < d; otherwise P, 4(f) is zero.
Equations 7.79 can be used to derive the recursion relation for the Bernsiein polynomials
shown below.

Piy(t) = (1 = DPu—i(1) + tPi-1 41 (1) (7.80)

Equation 7.80 can be proved by substituting equations 7.79 for the Bernstein poly-
nomials and by collecting terms. When i = 0 in equation 7.80, the second term on the
right is zero because for this case the subscript i~1 is less than zero (and thus outside of
the subscript range for which P;(t) is nonzero). Similarly, when i = d in equation 7.80, the
first term on the right is zero because the subscript 7 is greater than the second subscript
d-1.

Equations 7.78-7.80 can be programmed to provide the subroutine bezier() listed be-
low. This subroutine plots a general Bézier curve, starting with the coordinates of n control
points.

void bezier(int n,double x[],double y[])
{

int i,j,k,d,nsegs;

double t,dt;

double p[20] [20],xp,yp;

4 = n-1;
nsegs = 50; dt = 1./(double) nsegs;
MoveTo( (int) x[0], (int) y{[0});

for (j=1,t=dt;j<=nsegs;j++,t+=dt)
{
plol[o]l = 1.;
for (k=1; k<=d; k++)
{
plOl[k] = (1.-t)*p[0][k-1];
for (i=1; di<k; i++)
{
plil (k] = (1.-t)*pl[i]l[k-1] + t*p[i-1][k~1];
}
plkl[k] = t*plk-1][k-1]1;
)
xp = 0.; yp =0.;
for (i=0; i<=d4; i++)
{

xp + x{i}*pl[i}[d4];
yp + ylil*plil[dl;

xp
yp

}
LineTo( (int) xp, (int) yp):
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For the general-order Bézier curve, each vertex point has an cffect on cvery part of
the curve. Thercfore, there is little local control by an individual vertex point, especially for
curves that have a large number of vertices. To achieve local control of the curve shape, cu-
bic Bézier curves may be appropriately joined to form a composite cubic Bézier curve.

Composite Cubic Bézier Curves

PostScript printers use font outlines described by composite cubic Bézier curves. Because a
cubic Bézier curve is determined by four vertex points, the overall curve is divided into seg-
ments that have four points each. Consider an even total number of data points greater than
six. The open curve drawn by the subroutine cubicBezier() listed below is an approximation
curve that passes through the first and last points, with the remaining data points acting as
control points that influence the curve locally. Additional points are added at the curve joints.
Therefore, an interior curve segment has two interior data points and two added vertex points
at its ends, whereas an end segment has three data points and one added vertex point.

The curve segments will have matching slopes at the interior joints if the added ver-
tices (joint positions) are colinear with the data points on cither side. In the program listing
below, C! continuity is achicved by placing the added vertex points at the midpoint of the
line joining two data points; see figure 7.22a. This program subroutine was used to draw
the letter § shown in figure 7.22b. In this figure, the original vertex points are shown as dots,
and the added vertices are located where the tick marks cross the curves.

void cubicBezier (int n,double x[}],double yI])
{
int i, j,nsegs,m,remainder;
double t,dt,p0,pl1,p2,p3,xp,yp,xv{50]1,yv[S0];

m = 3*n/2 - 3;

xv[0] = x[0]; yvI[0] = y[0]1;
j=1;

for (i=1l; i<m; i++)

Figure7.22 Composite cubic Bézier curves:
(a) the first two curve segments at the bottom
of the letter S, starting on the left, with the
first joint (shown by a tick mark) located at
the midpoint of a line joining the third and
fourth data points, and the second joint at the
midpoint of a line joining the fifth and sixth
data points; (b) thc completed letter S com-
‘ : posed of two composite Bézier curves and six

short line segments that form the serifs at the

@ (b) ends of the curves.
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Exercises
{
remainder = i % 3;
if (remainder == 0)
{
xv[il = .5*(x[jI1+x(3i-11);
yvlil = .5*(y[31+y(i-11);
}
else
{
xv[i} = x[§1; yvIiil = y[j]:
J++;
}
}

xv[m] = x(n-11; yviml = y[n-1];

nsegs = 50; dt = 1./(double) nsegs;
MoveTo( (int) xv{0], (int) yv[01);
for (i=0; i<m-2; i+=3)

{
for (j=1,t=dt;j<=nsegs;j++, t+=dt)
{
p0 = (l.-t)*(1.-t)*(1l.-t);
pl = 3.*%t*(1.-t)*(1.-t);
p2 = 3.%t*t*(1l.~t);
p3 = t*t*t;
xp = po*xv[i]+p1*xv[i+1]+p2*xv[i+2]+p3*xv[i+3];
YD = POYyvI[il+plryv[i+11+p2*yv[i+2]+p3*yv[i+3];
LineTo((int) xp, (int) ¥yp);
}
}
}
EXERCISES

7.1 Use the Lagrange interpolating polynomial formulation to implement the high-order polyno-
mial curve-fitting method discussed in section 7.1. Apply your program to various polylines,
and find cases for which large wiggles occur between data points.

7.2 Generalize the high-order polynomial curve fit of section 7.1 by incorporating a parametric rep-
resentation for x and y following the discussion in section 7.3. Program your results and carry out
a test on an open curve that first extends to larger x values and then turns back to smaller x values.

7.3 On your CAD system or with programming, reproduce the canoe cross sections shown at the
beginning of this chapter. The data for these curves are given in table 12.3 in chapter 12.

7.4 Onyour CAD system, draw the curves representing the ceiling rib structure shown in figure 7.4.

7.5 Program the circular arc curve-fit developed in section 7.2. Extend the subroutine to include the
cases of lines with two, three, and four points.
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7.6 Write and test a program for a circular arc fit of closed curves.

7.7 Write a program to plot the parabolic blend for closed curves.

7.8 Use the subroutine given in section 7.5 to write 4 program for plotting natural cubic splines for
open curves.

7.9 Implement the subroutines of section 7.6 to draw both open and closed quadratic uniform
B-splines.

7.10 Implement the subroutine of section 7.6 to draw open cubic uniform B-splines.

7.11 Write a program for drawing cfosed cubic uniform B-splines.

7.12 Use AutoCAD to draw your initials in a particular font style (the Times Roman font was used
for the example in figure 7.16). Draw the first letter with a circular-arc fit, the second letter with
quadratic B-splines, and the third letter with cubic B-splines.

7.13 Use cubic B-splines to draw the automobile curves shown in figure 7.15.

7.14 Use cubic B-splines to draw the side view (shown below) of the bentwood rocker designed by
Michael Thonet in 1860 (sce, c.g., C. D. Gandy and S. Zimmermann-Stidham, Contemporary
Classics: Furniture of the Masters. New York: Whitney Library of Design, 1981).

7.15 Use B-splines and arrays to draw the side view of a vehicle, like the Yamaha motorcycle below,
drawn on AutoCAD by Nam Won Back.
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7.16 Implement the subroutine in section 7.7 to draw an open quadratic nonuniform B-spline.

7.17 Derive the algebraic expressions for the fourth-order (cubic) nonuniform B-spline basis func-
tion Nja(1).

7.18 Write a program that draws fourth-order nonuniform B-splines.

7.19 For uniformly spaced knots, show that the fourth-order basis functions derived in exercise 7.17
reduce to the bi(t) expressions 7.61, except for the first two and last two segments along the
curve. Derive the appropriate expressions for the b(r) terms in the first two segments and in the
last two segments.

7.20 Write a program to draw quadratic nonuniform rational B-splines from given control points,
knot vector, and weight vector.

7.21 Write a quadratic NURBS program to produce the curves shown in figures 7.17b and 7.21.

7.22 Use the program of exercise 7.20 to plot a circle by using the seven control vertices located on
the equilateral triangle shown below (the first and last control points lie at the midpoint of the

equilateral triangle base). The following are the appropriate knot and weight vectors: Trr =
[{0,0,0,1,1,2,2,3,3,3]andw ={1,05,1,05,1,05,1].

Vs \AN Vi

7.23 Implement the composite cubic Bézier curve subroutine of section 7.8, and then plot the curved
portions of the letter S shown in figure 7.22b.
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