
Version Control
C. Alex Simpkins Jr., Ph.D
RDPRobotics LLC,
UC San Diego, Department of Cognitive Science
rdprobotics@gmail.com
csimpkinsjr@ucsd.edu

Lectures :http://casimpkinsjr.radiantdolphinpress.com/pages/cogs108_ss1_23/index.html

mailto:rdprobotics@gmail.com?subject=
mailto:csimpkinsjr@ucsd.edu
http://casimpkinsjr.radiantdolphinpress.com/pages/cogs108_ss1_23/index.html

This sucks

Yup, this sucks too.

adapted from Brad Voytek

This is a step in the right direction

Version Control

● Enables multiple people to simultaneously work on a single
project.

● Each person edits their own copy of the files and chooses when
to share those changes with the rest of the team.

● Thus, temporary or partial edits by one person do not interfere
with another person's work

adapted from Brad Voytek

What is version control?

A way to manage the evolution of a set of files

What is version control?

A way to manage the evolution of a set of files

v1 v2 v3Fi
le

1_

What is version control?

A way to manage the evolution of a set of files

v1 v2 v3

v1 v2 v3 v4 FINAL FINALfinal

Fi
le

1_
Fi

le
2_

What is version control?

A way to manage the evolution of a set of files

File2

File1
When using a version control system,
you have one copy of each file and
the version control system tracks the
changes that have occurred over time

What is version control?
A way to manage the evolution of a set of files

File2

File1

The set of files is
referred to as a
repository
(repo)

https://insights.stackoverflow.com/survey/2017#work-version-control

https://insights.stackoverflow.com/survey/2017#work-version-control

git & GitHub

GitHub (or Bitbucket or
GitLab) is the home where

your git-based projects live
on the Internet.

the version control system

~ Track Changes
from Microsoft
Word….on
steroids

~ Dropbox….but
way better

“Global Information Tracker”

What version control looks like
$ git clone https://www.github.com/username/repo.git
$ git pull
$ git add -A
$ git commit -m “informative commit message”
$ git push

Terminal
GitHub

GitHub Desktop

GUIs can be helpful when working with version control

SourceTree

Version Controller

How do you typically interact with git?
A

I don’t
B

command
line

C
GUI:

GitHub
Desktop

D
GUI:

SourceTree

E
GUI:
other

Why version control with git and GitHub?

Returning to
a safe stateCollaboration

Exposure
for your

work

Tracking
others’ work

Collaborate like you do with Google Docs

Collaboration

GitHub repository

Each person is making changes locally
(on their computer)

Make changes locally, while knowing a stable copy exists

Returning to
a safe state

You’re free and safe to try
things out locally. You’ll only

send changes to the repo
when you’re at a stable point

Your repositories will be visible to others!

Exposure
for your

work

Your public GitHub repos
are your coding social

media

Keep up with others’ work easily

Tracking
others’ work As a social platform, you

can see others’ work too!

repo

A GitHub repo contains all the
files and folders for your project.

File2

File1

re
po

GitHub is a remote
host. The files are
geographically
distant from any files
on your computer.

clonerepo
File2

File1

re
po

When you first make a
copy onto your local
computer (read: laptop),
you clone the
repository.

clonerepo
File2

File1

re
po

clone If someone else on your project
cloned the repo at the same
time, you would have identical
copies of the project on each of
your computers.

clonerepo
File2

File1

re
po

clone

Yay! Everyone can
work on the project!

repo
File2

File1

re
po

You decide you want to
change some of the text
in the project.

repo
File2

File1

re
po

You decide you want to
change some of the text
in the project.

repo
File2

File1

re
po

without git...you’d
likely rename
these files….

car_new.txt

prof_new.txt

car.txt

prof.txt

Car goes fast.
Car goes beep.

Prof sleeps like
a rock.

Car goes real
fast. Car goes
beep.

Prof sleeps like
a rock. That’s
why she has so
much energy
in the AM..

repo
File2

File1

re
po

Thank
goodness those
days are over!

car_new.tx
t

prof_new.txt

car.txt

prof.txt

Car goes fast.
Car goes beep.

Prof sleeps like
a rock.

Car goes real
fast. Car goes
beep.

Prof sleeps like
a rock. That’s
why she has so
much energy
in the AM..

repo
File2

File1

re
po

Instead, you tell git which files
you’d like to keep track of
using add. This process is
called staging.

car.txt

prof.txt

Car goes fast.
Car goes beep.

Prof sleeps like
a rock.

Car goes real
fast. Car goes
beep.

Prof sleeps like
a rock. That’s
why she has so
much energy
in the AM..

repo
File2

File1

re
po

Instead, you tell git which files
you’d like to keep track of
using add. This process is
called staging.

git add file stages specified file (or folder)
git add . stages new and modified files
git add -u stages modified and deleted files
git add -A stages new, modified, and

deleted files
git add *.csv Stages any files with .csv

extension
git add * Use with caution: stages

everything

car.txt

prof.txt

Car goes fast.
Car goes beep.

Prof sleeps like
a rock.

Car goes real
fast. Car goes
beep.

Prof sleeps like
a rock. That’s
why she has so
much energy
in the AM..

repo
File2

File1

re
po

Then, you create a snapshot of
your files at this point. This
snapshot is called a commit.

car.txt

prof.txt

Car goes fast.
Car goes beep.

Prof sleeps like
a rock.

Car goes real
fast. Car goes
beep.

Prof sleeps like
a rock. That’s
why she has so
much energy
in the AM..

repo
File2

File1

re
po

Then, you create a snapshot of
your files at this point. This
snapshot is called a commit.

A commit tracks
who, what, and

when

car.txt

prof.txt

Car goes fast.
Car goes beep.

Prof sleeps like
a rock.

Car goes real
fast. Car goes
beep.

Prof sleeps like
a rock. That’s
why she has so
much energy
in the AM..

repo
File2

File1

re
po

Then, you create a snapshot of
your files at this point. This
snapshot is called a commit.

You can make commits more
informative by adding a
commit message.

Example: git commit -m 'fix
typos in car and prof'

A commit tracks
who, what, and

when

car.txt

prof.txt

Car goes fast.
Car goes beep.

Prof sleeps like
a rock.

Car goes real
fast. Car goes
beep.

Prof sleeps like
a rock. That’s
why she has so
much energy
in the AM..

repo
File2

File1

re
po

Shannon Ellis
3/28/21 3:28pm
fix typos in car and prof

repo
File2

File1

re
po

Remember, you’re not the only one
working on this project though! You
want your teammates to have access
to these changes! You push these
changes back to the remote.

Shannon Ellis
3/28/21 3:28pm
fix typos in car and prof

push

repo
File2

File1

re
po

Shannon Ellis
3/28/21 3:28pm
fix typos in car and prof

Shannon Ellis
3/28/21 3:28pm
fix typos in car and prof

Your teammate is still
working with the (out-
of-date) copy he
cloned earlier!

repo
File2

File1

re
po

Shannon Ellis
3/28/21 3:28pm
fix typos in car and prof

Shannon Ellis
3/28/21 3:28pm
fix typos in car and prof

Your teammate is still
working with the (out-
of-date) copy he
cloned earlier!

To catch up, your teammate will have to
pull the changes from GitHub (remote)

repo
File2

File1

re
po

Shannon Ellis
3/28/21 3:28pm
fix typos in car and prof

Your teammate pulls
from remote and is
now up-to-date!

pull

repo
File2

File1

re
po

Shannon Ellis
3/28/21 3:28pm
fix typos in car and prof

Your teammate pulls
from remote and is
now up-to-date!

pull

The files in his project
locally will now have
the updated files

car.txt

prof.txt

Car goes fast.
Car goes beep.

Prof sleeps like
a rock.

Car goes real
fast. Car goes
beep.

Prof sleeps like
a rock. That’s
why she has so
much energy
in the AM..

File2

File1

re
po

commit

push

clone

pull

remote
host

local
host Let’s recap real quick!

repo - set of files and folders for a project
remote - where the repo lives
clone - get the repo from the remote for the first time
add - specify which files you want to stage (add to repo)
commit - snapshot of your files at a point in time
pull - get new commits to the repo from the remote
push - send your new commits to the remote

Review & Question Time

Version Controller I

You’ve been working with a team on a project in a repo.
You’ve made changes locally and you want to see them on the

remote.

What do you do to get them on the remote?

A
clone

B
remote

C
merge

D
pull

E
push

Version Controller II

Your teammate has given you access to a GitHub repository
to work on a project together. You want to get them for the

first time on your computer locally.

What do you do to get the repo on your computer?

A
clone

B
remote

C
commit

D
pull

E
push

repo
File2

File1

re
po

Shannon Ellis

3/28/21 3:28pm

fix typos in car and prof

Shannon Ellis

3/28/21 5:08pm

edited to include survival analysis

Each time you create a commit, git
tracks the changes made automatically.

Kevin Malone

3/26/18 9:10am

Initial commit

Angela Martin

3/26/21 11:11am

Included analysis files

repo
File2

File1

re
po

By committing each time you make
changes, git allows you to time travel!

repo
File2

File1

re
po

377dfcd00dd057542b112cf13be6cf1380b292
ad

By committing each time you make
changes, git allows you to time travel!

439301fe69e8f875c049ad0718386516b4878
e22

456722223e9f9e0ee0a92917ba80163028d89
251There’s a unique id, known as

a hash, associated with each
commit.

repo
File2

File1

re
po

377dfcd00dd057542b112cf13be6cf1380b292
ad

You can return to the state of the
repository at any commit. Future commits
don’t disappear. They just aren’t visible
when you check out an older commit.

repo
File2

File1

re
po

But...not everything is always linear.
Sometimes you want to try something out
and you’re not sure it’s going to work. This

is where you’ll want to use a branch.

main branch

try-something-cool

repo
File2

File1

re
po

It’s a good way to experiment. It’s
pretty easy to get rid of a branch
later on should you not want to

include the commits on that branch.

main branch

try-something-cool

repo
File2

File1

re
po

But...what if you DO want to
include the changes you’ve

made on your try-something-cool
branch into the main branch?

main

try-something-cool

repo
File2

File1

re
po

A merge allows you to combine
the commits from a branch back

into the main.

main

try-something-cool

someone
else’s
repo

fork

your
GitHub

What if someone else is working
on something cool and you want

to play around with it? You’ll
have to fork their repo.

someone
else’s
repo

fork

your
GitHub

clone

commit

push
pull

After you fork their repo, you can
play around with it however you
want, using the workflow we’ve

already discussed.

someone
else’s
repo

fork

your
GitHub

clone

commit

But what if you think you’ve found a bug in
their code, a typo, or want to add a new
feature to their software? For this, you’ll

submit a pull request (aka PR).

pull
request

someone
else’s
repo

fork

your
GitHub

clone

commit

But what if you think you’ve found a bug in
their code, a typo, or want to add a new
feature to their software? For this, you’ll

submit a pull request (aka PR).

pull
request

The author then
reviews your code/
edits and decides

whether or not they
want to merge your

pull request.

someone
else’s
repo

Last but not least...what if you
find a bug in someone else’s
code OR you want to make a
suggestion but aren’t going to

submit a suggestion with a PR.
For this, you can file an issue on

GitHub.

someone
else’s
repo

Last but not least...what if you
find a bug in someone else’s
code OR you want to make a
suggestion but aren’t going to

submit a suggestion with a PR.
For this, you can file an issue on

GitHub.

Issues are bug trackers.
While, they can include bugs,
they can also include feature
requests, to-dos, whatever you
want, really!
They can be assigned to
people.
They can be closed once
addressed ….or if the software
maintainer doesn’t like the
suggestion

377dfcd00dd057542b112cf13be6cf1380b292
ad

commits allow you to time travel
because each commit is assigned
a unique hash

One more git recap...

377dfcd00dd057542b112cf13be6cf1380b292
ad

commits allow you to time travel
because each commit is assigned
a unique hash

main branch

try-something-cool

branches allow you to
experiment. branches can be
abandoned or merged

One more git recap...

377dfcd00dd057542b112cf13be6cf1380b292
ad

commits allow you to time travel
because each commit is assigned
a unique hash

main branch

try-something-cool

branches allow you to
experiment. branches can be
abandoned or merged

One more git recap...

someone
else’s
repo

fork

your
GitHub

You can work on others’
repos by first forking their
repository onto your GitHub

377dfcd00dd057542b112cf13be6cf1380b292
ad

commits allow you to time travel
because each commit is assigned
a unique hash

main branch

try-something-cool

branches allow you to
experiment. branches can be
abandoned or merged

One more git recap...

someone
else’s
repo

fork

your
GitHub

You can work on others’
repos by first forking their
repository onto your GitHub

Pull requests allow you to make
specific edits to others’ repos

Issues allow you to make general
suggestions to your/others’ repos

Review & Question Time

Version Controller III

To experiment within your own repo (test out a new
feature, make some changes you’re not sure will work)...

what should you do?

A
hash

B
branch

C
merge

D
fork

E
pull

request

Version Controller IV

If you’ve made edits to someone else’s repo that you’re not a collaborator on…

what would they have to do to incorporate your changes?

A
hash

B
branch

C
merge

D
fork

E
pull

request

https://nextjournal.com/schmudde/how-to-version-control-jupyter

Jupyter notebooks have problems for version control

Version Control: Practice
- Discussion Lab 1: Part 3
- Assignment 1: Part 1

- This will get you practice with git & GitHub
- Understand what you’re doing in the assignment!
- You may have to google, ask others, spend some time with this!
- Part II is a Python review; each part of this assignment is self-

contained
- Do this part of the assignment ASAP

- git & Github == How to get the course lectures/materials
- Assignment 1 will have you fork the Lectures and Project repos
- You can keep the lectures up-to-date throughout the quarter

- you’ll be using GitHub for your final projects

Note: You’re
encouraged to put
projects on GitHub.
Please do not put
assignments on
GitHub.

https://stefanbauer.me/articles/how-to-keep-your-git-fork-up-to-date

COGS 108 Final Projects

The COGS 108 Final Project will give you the
chance to explore a topic of your choice and to

expand your analytical skills. By working with real
data of your choosing you can examine questions of

particular interest to you.
- You are encouraged to work on a topic that matters to the world (your family, your

neighborhood, a state/province, country, etc).
- Taboo Topics: Movie Predictions/Recommendation System; YouTube Data

Analysis, Kickstarter success prediction/analysis, prediction of what makes a song
popular on Spotify; political patterns or singling out some individual, anything that
violates university policy

https://github.com/COGS108/Projects/blob/master/FinalProject_Guidelines.md#Taboo-Topics

Final Project: Objectives

● Identify the problems and goals of a real situation and dataset.
! Choose an appropriate approach for formalizing and testing the problems and goals,

and be able to articulate the reasoning for that selection.
! Implement your analysis choices on the dataset(s).
! Interpret the results of the analyses.
! Contextualize those results within a greater scientific and social context, acknowledging

and addressing any potential issues related to privacy and ethics.
! Work effectively to manage a project as part of a team.

Upcoming Project Components

Project Review (5%) - Before Mon of week 2, your group will be assigned a
previous COGS 108 project to review; A google Form will be released to guide
your thinking/discussion about and review of what a previous COGS 108 group
did for their project. (due Fri Week 2)

Project Proposal (9%) - a GitHub repo will be created for your group; ‘submit’ on
GitHub (due Fri Week 2)

Project Proposal (9%)

Full project guidelines are going to be at the projects link of the web
page: http://casimpkinsjr.radiantdolphinpress.com/pages/

cogs108_ss1_23/index.html

http://casimpkinsjr.radiantdolphinpress.com/pages/cogs108_ss1_23/index.html

